Open Access
Issue
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
Article Number 10012
Number of page(s) 7
Section Bio & Human Engineering
DOI https://doi.org/10.1051/matecconf/201818910012
Published online 10 August 2018
  1. Wu X Kumar V Quinlan J R, et al. Top 10 algorithms in data mining[J]. Knowledge & Information Systems, 2007, 14(1):1-37. [Google Scholar]
  2. Sharma S Bhatia S. Analysis of Association rule in Data Mining[C]. International Conference on Information and Communication Technology for Competitive Strategies. ACM, 2016:1-4. [Google Scholar]
  3. Agrawal R. Fast Algorithm for Mining Association Rules in Large Databases[C]// Proc. Very Large Data Bases Conference. 1994. [Google Scholar]
  4. Agrawal R Imieliñski T Swami A. Mining Assocation Rules between Sets of Items in Large Databases[J]. Proc of Sigmod, 1993, 22(2):207-216. [CrossRef] [Google Scholar]
  5. Han J Pei J Yin Y. Mining frequent patterns without candidate generation[C]. ACM SIGMOD International Conference on Management of Data. ACM, 2000:1-12. [Google Scholar]
  6. Heaton J. Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining algorithms[C]. Southeastcon. IEEE, 2017:1-7. [Google Scholar]
  7. Difallah D E, Benton R G, Raghavan V et al. FAARM: Frequent Association Action Rules Mining Using FP-Tree[C]. IEEE, International Conference on Data Mining Workshops. IEEE Computer Society, 2011:398-404. [Google Scholar]
  8. Hao J He M. A Parallel FP-Growth Algorithm Based on GPU[C]. IEEE, International Conference on E-Business Engineering. IEEE Computer Society, 2017:97-102. [Google Scholar]
  9. Chang H Y, Lin J C, Cheng M L, et al. A Novel Incremental Data Mining Algorithm Based on FP-growth for Big Data[C]. International Conference on NETWORKING and Network Applications. IEEE, 2016:375-378. [Google Scholar]
  10. Tsai C F, Lin Y C, Chen C P. A new fast algorithms for mining association rules in large databases[C]. International Conference on Systems, Man and Cybernetics. IEEE, 2002:6 pp. [Google Scholar]
  11. Sun D Teng S Zhang W et al. An Algorithm to Improve the Effectiveness of Apriori[C].International Conference on Cognitive Informatics. IEEE, 2007:385-390. [Google Scholar]
  12. Heaton J. Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining algorithms[C]. Southeastcon. IEEE, 2017:1-7. [Google Scholar]
  13. Chen M Gao X D, Li H F. An efficient parallel FP-Growth algorithm[C]. International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, 2009:283-286. [CrossRef] [Google Scholar]
  14. Difallah D E, Benton R G, Raghavan V et al. FAARM: Frequent Association Action Rules Mining Using FP-Tree[C]. International Conference on Data Mining Workshops. IEEE, 2011:398-404. [Google Scholar]
  15. Hao J He M. A Parallel FP-Growth Algorithm Based on GPU[C]. IEEE, International Conference on E-Business Engineering. IEEE Computer Society, 2017:97-102. [Google Scholar]
  16. Subbulakshmi B Dharini B Deisy C. Recent weighted maximal frequent itemsets mining[C]. International Conference on I-Smac. IEEE, 2017:391-397. [Google Scholar]
  17. Willhalm T et al. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory[C]. International Conference on Management of Data. ACM, 2016:371-386. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.