Open Access
Issue
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
Article Number 00010
Number of page(s) 15
DOI https://doi.org/10.1051/matecconf/201818500010
Published online 31 July 2018
  1. H.J. Tobler, Ionisationsfeuermelder: Technische Und Wirtschaftliche Bedeutung, Bulletin SEV/VSE, 23(6), 13-15 (2006) [Google Scholar]
  2. Y.P. Gupta, Automatic Fire Detection Systems: Aspects of Reliability, Capability and Selection Criteria, Fire Safety J., 8(2), 105-117 (1985) [CrossRef] [Google Scholar]
  3. U. Hoefer, D. Gutmacher, Fire Gas Detection, a Procedia Engineering, 47, 1446-1459 (2012) [CrossRef] [Google Scholar]
  4. B.C. Hagen, J.A. Milke, The Use of Gaseous Fire Signatures as a Mean to Detect Fires, Fire Safety J., 34(1), 55-67 (2000) [CrossRef] [Google Scholar]
  5. P.W. Nebiker, R.E. Pleisch, Photoacoustic Gas Detection for Fire Warning, Fire Safety J., 36(2), 173-180 (2001) [CrossRef] [Google Scholar]
  6. P.W. Nebiker, R.E. Pleisch, Photoacoustic Gas Detection for Fire Warning, Fire Safety J., 37, 429-436 (2002) [CrossRef] [Google Scholar]
  7. W. Krüll, R. Tobera, I. Willms, H. Essen, N. V. Wahl, Early Forest Fire Detection and Verification Using Optical Smoke, Gas and Microwave Sensors, Procedia Engineering, 45, 584-594 (2012) [CrossRef] [Google Scholar]
  8. W. Krüll, I. Willms, R. Tobera, B. Wiggerich, Early Forest Fire Detection and Suppression – An Integrated Approach, 14th International Conference on Automatic Fire Detection, AUBE ’09, Duisburg, Germany, (2009) [Google Scholar]
  9. R. Tobera, W. Krüll, I. Willms, Optical Smoke and Gas Sensors as An Additional Method for Early Wildfire Verification, 14th International Conference on Automatic Fire Detection, AUBE ’09, Duisburg, Germany (2009) [Google Scholar]
  10. GTE Industrieelektronik GmbH, http://www.adicos.de [Google Scholar]
  11. F. Derbel, Performance Improvement of Fire Detectors by Means of Gas Sensors and Neural Networks, Fire Safety J., 39(5), 383-398 (2004) [CrossRef] [Google Scholar]
  12. L. A. Cestari, C. Worrell, J.A. Milke, Advanced Fire Detection Algorithms Using Data from the Home Smoke Detector Project, Fire Safety J., 40(1), 1-28 (2005) [CrossRef] [Google Scholar]
  13. S.J. Chen, D.C. Hovde, K.A. Peterson, A.W. Marshall, Fire Detection Using Smoke and Gas Sensors, Fire Safety J., 42(8), 507-515 (2007) [CrossRef] [Google Scholar]
  14. J. Mulrooney, J. Clifford, C. Fitzpatrick, E. Lewis, Detection of Carbon Dioxide Emissions from a Diesel Engine Using a Mid-infrared Optical Fibre Based Sensor, Sensors and Actuators A: Physical, 136(1), 104-110 (2007) [Google Scholar]
  15. J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, E. Lewis, A Mid-infrared Optical Fibre Sensor for the Detection of Carbon Monoxide Exhaust Emissions, Sensors and Actuators A: Physical, 144(1), 13-1 (2008) [CrossRef] [Google Scholar]
  16. D. Gutmacher, U. Hoefer, J. Wöllenstein, Gas Sensor Technologies for Fire Detection, Sensors and Actuators B: Chemical, 175, 40-45 (2012) [CrossRef] [Google Scholar]
  17. C. Becher, P. Kaul, J. Mitrovics, J. Warmer, The Detection of Evaporating Hazardous Material Released from Moving Sources Using a Gas Sensor Network, Sensors and Actuators B: Chemical, 146(2), 513-520 (2010) [CrossRef] [Google Scholar]
  18. J. Y. Min, D. Y. Paek, S. I. Cho, K. B. Min, Exposure to Environmental Carbon Monoxide May Have a Greater Negative Effect on Cardiac Autonomic Function in People with Metabolic Syndrome, Science of the Total Environment, 407(17), 4807-4811 (2009) [CrossRef] [Google Scholar]
  19. H. C. Cheng, M. C. Chiu, The Design of An Automatic Wind Electricity Monitoring System for a Battery Charge Process, J. of Information & Optimization Sciences, 34(6), 373-388 (2013) [CrossRef] [Google Scholar]
  20. H. C. Cheng, M. C. Chiu, Automatic Solar Electrical Monitor for a Battery Charge Process Using a Network Remote Control System, Applied Mechanics and Materials, 336-338, 1211-1216 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.