Open Access
Issue
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
Article Number 00001
Number of page(s) 31
DOI https://doi.org/10.1051/matecconf/201818500001
Published online 31 July 2018
  1. M. Jimenez, H. Hamze, A. Allion, G. Ronse, G. Delaplace, M. Traisnel, Antifouling stainless steel surface: competition between roughness and surface energy, in: Materials Science Forum, Trans Tech Publ, 2012, pp. 2523-2528 [CrossRef] [Google Scholar]
  2. J.A. Barish, J.M. Goddard, Anti-fouling surface modified stainless steel for food processing, Food and Bioproducts Processing, 91 (2013) 352-361 [CrossRef] [Google Scholar]
  3. J.S. Patel, B. Bansal, M.I. Jones, M. Hyland, Fouling behaviour of milk and whey protein isolate solution on doped diamond-like carbon modified surfaces, Journal of Food Engineering, 116 (2013) 413-421 [CrossRef] [Google Scholar]
  4. M. Mauermann, U. Eschenhagen, T. Bley, J.-P. Majschak, Surface modifications–application potential for the reduction of cleaning costs in the food processing industry, Trends in Food Science & Technology, 20 (2009) S9-S15 [CrossRef] [Google Scholar]
  5. L. Gomes da Cruz, E.M. Ishiyama, C. Boxler, W. Augustin, S. Scholl, D.I. Wilson, Value pricing of surface coatings for mitigating heat exchanger fouling, Food and Bioproducts Processing, (2014) [Google Scholar]
  6. J.A. Barish, J.M. Goddard, Stability of nonfouling stainless steel heat exchanger plates against commercial cleaning agents, Journal of Food Engineering, 124 (2014) 143-151 [CrossRef] [Google Scholar]
  7. T. Mérian, J.M. Goddard, Advances in Nonfouling Materials: Perspectives for the Food Industry, Journal of agricultural and food chemistry, 60 (2012) 2943-2957 [CrossRef] [Google Scholar]
  8. F. Podczeck, Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling, International Journal of Pharmaceutics, 178 (1999) 93-100 [CrossRef] [Google Scholar]
  9. D. Gunn, Effect of surface roughness on the nucleation and growth of calcium sulphate on metal surfaces, Journal of Crystal Growth, 50 (1980) 533-537 [CrossRef] [Google Scholar]
  10. J.F. Schumacher, M.L. Carman, T.G. Estes, A.W. Feinberg, L.H. Wilson, M.E. Callow, J.A. Callow, J.A. Finlay, A.B. Brennan, Engineered antifouling microtopographies–effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva, Biofouling, 23 (2007) 55-62 [CrossRef] [Google Scholar]
  11. M.V. Graham, N.C. Cady, Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling, Coatings, 4 (2014) 37-59 [CrossRef] [Google Scholar]
  12. Y. Engel, J.D. Schiffman, J.M. Goddard, V.M. Rotello, Nanomanufacturing of biomaterials, Materials Today, 15 (2012) 478-485 [Google Scholar]
  13. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects, Advances in colloid and interface science, 170 (2012) 2-27 [CrossRef] [PubMed] [Google Scholar]
  14. A.K. Epstein, J. Aizenberg, Biomimetic nanostructured surfaces with designer mechanics and geometry for broad applications, in: MRS Proceedings, Cambridge Univ Press, 2009, pp. 1236-SS1209-1207 [Google Scholar]
  15. L. Li, V. Breedveld, D.W. Hess, Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition, ACS applied materials & interfaces, 4 (2012) 4549-4556 [CrossRef] [Google Scholar]
  16. J.F. Schumacher, N. Aldred, M.E. Callow, J.A. Finlay, J.A. Callow, A.S. Clare, A.B. Brennan, Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids, Biofouling, 23 (2007) 307-317 [CrossRef] [Google Scholar]
  17. P. Roach, D. Eglin, K. Rohde, C.C. Perry, Modern biomaterials: a review—bulk properties and implications of surface modifications, Journal of Materials Science: Materials in Medicine, 18 (2007) 1263-1277 [CrossRef] [Google Scholar]
  18. M.V. Graham, A.P. Mosier, T.R. Kiehl, A.E. Kaloyeros, N.C. Cady, Development of antifouling surfaces to reduce bacterial attachment, Soft Matter, 9 (2013) 6235-6244 [CrossRef] [Google Scholar]
  19. M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology, Nature materials, 2 (2003) 577-585 [CrossRef] [Google Scholar]
  20. B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal, Langmuir, 26 (2010) 8207-8217 [CrossRef] [Google Scholar]
  21. F. Guittard, T. Darmanin, Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials, Journal of Materials Chemistry A, (2014) [Google Scholar]
  22. O.-U. Nimittrakoolchai, S. Supothina, Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications, Journal of the European Ceramic Society, 28 (2008) 947-952 [CrossRef] [Google Scholar]
  23. S. Nishimoto, B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, Rsc Advances, 3 (2013) 671-690 [CrossRef] [Google Scholar]
  24. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, Artificial lotus leaf by nanocasting, Langmuir, 21 (2005) 8978-8981 [CrossRef] [Google Scholar]
  25. M. Qu, G. Zhao, X. Cao, J. Zhang, Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties, Langmuir, 24 (2008) 4185-4189 [CrossRef] [Google Scholar]
  26. G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects, Soft Matter, 8 (2012) 11271-11284 [CrossRef] [Google Scholar]
  27. K. Liu, X. Yao, L. Jiang, Recent developments in bio-inspired special wettability, Chemical Society Reviews, 39 (2010) 3240-3255 [Google Scholar]
  28. P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates, Nano letters, 13 (2013) 1793-1799 [CrossRef] [PubMed] [Google Scholar]
  29. C. Mao, C. Liang, W. Luo, J. Bao, J. Shen, X. Hou, W. Zhao, Preparation of lotus-leaf-like polystyrene micro-and nanostructure films and its blood compatibility, Journal of Materials Chemistry, 19 (2009) 9025-9029 [CrossRef] [Google Scholar]
  30. K.K. Chung, J.F. Schumacher, E.M. Sampson, R.A. Burne, P.J. Antonelli, A.B. Brennan, Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus, Biointerphases, 2 (2007) 89-94 [CrossRef] [Google Scholar]
  31. S.T. Reddy, K.K. Chung, C.J. McDaniel, R.O. Darouiche, J. Landman, A.B. Brennan, Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli, Journal of Endourology, 25 (2011) 1547-1552 [CrossRef] [Google Scholar]
  32. Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Muller-Steinhagen, Effect of surface free energy on the adhesion of biofouling and crystalline fouling, Chemical Engineering Science, 60 (2005) 4858-4865 [CrossRef] [Google Scholar]
  33. M.E. Callow, R.L. Fletcher, The influence of low surface energy materials on bioadhesion—a review, International biodeterioration & biodegradation, 34 (1994) 333-348 [CrossRef] [Google Scholar]
  34. E. Lindner, A low surface free energy approach in the control of marine biofouling, Biofouling, 6 (1992) 193-205 [CrossRef] [Google Scholar]
  35. Q. Zhao, C. Liu, Y. Liu, S. Wang, Bacterial and protein adhesion on Ni-P-PTFE coated surfaces, (2007) [Google Scholar]
  36. Hamza, V.A. Pham, T. Matsuura, J.P. Santerre, Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications, Journal of Membrane Science, 131 (1997) 217-227 [CrossRef] [Google Scholar]
  37. R. Baier, Substrata influences on adhesion of microorganisms and their resultant new surface properties, in, Wiley-Interscience, New York, 1980 [Google Scholar]
  38. P.J. Fryer, P.T. Robbins, I. Asteriadou, Current Knowledge in Hygienic Design: Can We Minimise Fouling and Speed Cleaning?, in: Advances in Food Process Engineering Research and Applications, Springer, 2013, pp. 209-227 [CrossRef] [Google Scholar]
  39. W. Liu, P. Fryer, Z. Zhang, Q. Zhao, Y. Liu, Identification of cohesive and adhesive effects in the cleaning of food fouling deposits, Innovative Food Science & Emerging Technologies, 7 (2006) 263-269 [CrossRef] [Google Scholar]
  40. M.C. Michalski, S. Desobry, J. Hardy, Food materials adhesion: a review, Critical reviews in food science and nutrition, 37 (1997) 591-619 [CrossRef] [Google Scholar]
  41. B. Bhandari, T. Howes, Relating the stickiness property of foods undergoing drying and dried products to their surface energetics, Drying Technology, 23 (2005) 781-797 [CrossRef] [Google Scholar]
  42. R. Rosmaninho, L.F. Melo, Calcium phosphate deposition from simulated milk ultrafiltrate on different stainless steel-based surfaces, International Dairy Journal, 16 (2006) 81-87 [CrossRef] [Google Scholar]
  43. C. Liu, Q. Zhao, Influence of surface-energy components of Ni–P–TiO2–PTFE nanocomposite coatings on bacterial adhesion, Langmuir, 27 (2011) 9512-9519 [CrossRef] [Google Scholar]
  44. C.J. Van Oss, Interfacial forces in aqueous media, CRC press, 2006 [CrossRef] [Google Scholar]
  45. C. Liu, Q. Zhao, The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria, Biofouling, 27 (2011) 275-285 [CrossRef] [Google Scholar]
  46. A.B. Kananeh, E. Scharnbeck, U. Kuck, N. Räbiger, Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings, Food and Bioproducts Processing, 88 (2010) 349-356 [CrossRef] [Google Scholar]
  47. K.R. Goode, K. Asteriadou, P.T. Robbins, P.J. Fryer, Fouling and cleaning studies in the food and beverage industry classified by cleaning type, Comprehensive Reviews in Food Science and Food Safety, 12 (2013) 121-143 [CrossRef] [Google Scholar]
  48. E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces, Journal of colloid and interface science, 402 (2013) 1-18 [Google Scholar]
  49. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, 40 (1944) 546-551 [Google Scholar]
  50. B.R. Bhandari, N. Datta, T. Howes, Problems associated with spray drying of sugar-rich foods, Drying Technology, 15 (1997) 671-684 [CrossRef] [Google Scholar]
  51. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir, 16 (2000) 5754-5760 [CrossRef] [Google Scholar]
  52. S.H. Yoon, N. Rungraeng, W. Song, S. Jun, Superhydrophobic and superhydrophilic nanocomposite coatings for preventing Escherichia coli K-12 adhesion on food contact surface, Journal of Food Engineering, 131 (2014) 135-141 [CrossRef] [Google Scholar]
  53. M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering, Current Opinion in Colloid & Interface Science, 14 (2009) 270-280 [Google Scholar]
  54. B. Bhushan, Fabrication Techniques Used for Structures with Superhydrophobicity, Self-Cleaning, Low Adhesion/Low Drag with Antifouling Properties, in: Biomimetics, Springer, 2012, pp. 67-78 [CrossRef] [Google Scholar]
  55. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Super-hydrophobic surfaces: from natural to artificial, Advanced materials, 14 (2002) 1857-1860 [CrossRef] [Google Scholar]
  56. A.K. Epstein, T.-S. Wong, R.A. Belisle, E.M. Boggs, J. Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance, Proceedings of the National Academy of Sciences, 109 (2012) 13182-13187 [CrossRef] [Google Scholar]
  57. H. Zhang, R. Lamb, J. Lewis, Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour, Science and Technology of Advanced Materials, 6 (2005) 236-239 [CrossRef] [Google Scholar]
  58. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms, Environmental science & technology, 46 (2012) 11135-11144 [CrossRef] [Google Scholar]
  59. S. Song, L. Jing, S. Li, H. Fu, Y. Luan, Superhydrophilic anatase TiO2 film with the micro-and nanometer-scale hierarchical surface structure, Materials Letters, 62 (2008) 3503-3505 [CrossRef] [Google Scholar]
  60. V. Kumar, J. Pulpytel, G. Giudetti, H. Rauscher, F. Rossi, F. Arefi-Khonsari, Amphiphilic Copolymer Coatings via Plasma Polymerisation Process: Switching and Anti-Biofouling Characteristics, Plasma Processes and Polymers, 8 (2011) 373-385 [CrossRef] [Google Scholar]
  61. J. Peng, Y. Su, Q. Shi, W. Chen, Z. Jiang, Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone, Bioresource Technology, 102 (2011) 2289-2295 [CrossRef] [Google Scholar]
  62. C.S. Gudipati, J.A. Finlay, J.A. Callow, M.E. Callow, K.L. Wooley, The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga ulva, Langmuir, 21 (2005) 3044-3053 [CrossRef] [Google Scholar]
  63. S. Arifuzzaman, A.E. Özçam, K. Efimenko, D.A. Fischer, J. Genzer, Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption, Biointerphases, 4 (2009) FA33-FA44 [CrossRef] [Google Scholar]
  64. Y. Wang, D.E. Betts, J.A. Finlay, L. Brewer, M.E. Callow, J.A. Callow, D.E. Wendt, J.M. DeSimone, Photocurable amphiphilic perfluoropolyether/poly (ethylene glycol) networks for fouling-release coatings, Macromolecules, 44 (2011) 878-885 [CrossRef] [Google Scholar]
  65. Z. Yi, L.-P. Zhu, Y.-Y. Xu, Y.-F. Zhao, X.-T. Ma, B.-K. Zhu, Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes, Journal of Membrane Science, 365 (2010) 25-33 [CrossRef] [Google Scholar]
  66. D. Tsuchida, C. Kang, M. Okada, K. Matsumoto, T. Kawagoe, Ice formation process by cooling water–oil emulsion with stirring in a vessel, International journal of refrigeration, 25 (2002) 250-258 [CrossRef] [Google Scholar]
  67. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Advanced materials, 23 (2011) 690-718 [CrossRef] [Google Scholar]
  68. A.B. Kananeh, E. Scharnbeck, D. Hartmann, Application of antifouling surfaces in plate heat exchanger for food production, in: International conference on Heat Exchanger Fouling and Cleaning VIII, Schladming, Austria, 2009 [Google Scholar]
  69. E. Sadeghinezhad, S.N. Kazi, A. Badarudin, M.N.M. Zubair, B.L. Dehkordi, C.S. Oon, A review of milk fouling on heat exchanger surfaces, Reviews in Chemical Engineering, 29 (2013) 169-188 [CrossRef] [Google Scholar]
  70. S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers for anti-biofouling surfaces, Journal of Materials Chemistry, 18 (2008) 3405-3413 [CrossRef] [Google Scholar]
  71. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, science, 284 (1999) 1318-1322 [Google Scholar]
  72. W.G. Sawyer, K.D. Freudenberg, P. Bhimaraj, L.S. Schadler, A study on the friction and wear behavior of PTFE filled with alumina nanoparticles, Wear, 254 (2003) 573-580 [Google Scholar]
  73. F.W. Billmeyer Jr, Textbook of polymer science in: New York, 1984 [Google Scholar]
  74. B.A. Krick, J.J. Ewin, G.S. Blackman, C.P. Junk, W. Gregory Sawyer, Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms, Tribology International, 51 (2012) 42-46 [CrossRef] [Google Scholar]
  75. R. Rosmaninho, O. Santos, T. Nylander, M. Paulsson, M. Beuf, T. Benezech, S. Yiantsios, N. Andritsos, A. Karabelas, G. Rizzo, Modified stainless steel surfaces targeted to reduce fouling–evaluation of fouling by milk components, Journal of Food Engineering, 80 (2007) 1176-1187 [CrossRef] [Google Scholar]
  76. Santos, T. Nylander, R. Rosmaninho, G. Rizzo, S. Yiantsios, N. Andritsos, A. Karabelas, H. Müller-Steinhagen, L. Melo, L. Boulangé-Petermann, C. Gabet, A. Braem, C. Trägårdh, M. Paulsson, Modified stainless steel surfaces targeted to reduce fouling—surface characterization, Journal of Food Engineering, 64 (2004) 63-79 [CrossRef] [Google Scholar]
  77. S. Armyanov, J. Georgieva, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, A. Ruffini, Electroless Deposition of Ni-Cu-P Alloys in Acidic Solutions, Electrochemical and solid-state letters, 2 (1999) 323-325 [CrossRef] [Google Scholar]
  78. N. Rungraeng, Y.-C. Cho, S.H. Yoon, S. Jun, Carbon nanotube-polytetrafluoroethylene nanocomposite coating for milk fouling reduction in plate heat exchanger, Journal of Food Engineering, 111 (2012) 218-224 [CrossRef] [Google Scholar]
  79. W. Chen, F. Li, G. Han, J. Xia, L. Wang, J. Tu, Z. Xu, Tribological behavior of carbon-nanotube-filled PTFE composites, Tribology Letters, 15 (2003) 275-278 [CrossRef] [Google Scholar]
  80. N. Rungraeng, S. Jun, Carbon Nanotubes–Polytetrafluoroethylene Nanocomposite Coatings, Polymer Nanocomposite Coatings, (2013) 61 [CrossRef] [Google Scholar]
  81. Q. Zhao, Y. Liu, C. Wang, Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties, Applied Surface Science, 252 (2005) 1620-1627 [CrossRef] [Google Scholar]
  82. E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 17 (2001) 5605-5620 [CrossRef] [Google Scholar]
  83. R.G. Chapman, E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, G.M. Whitesides, Surveying for surfaces that resist the adsorption of proteins, Journal of the American Chemical Society, 122 (2000) 8303-8304 [CrossRef] [Google Scholar]
  84. B. Nisol, G. Oldenhove, N. Preyat, D. Monteyne, M. Moser, D. Perez-Morga, F. Reniers, Atmospheric plasma synthesized PEG coatings: non-fouling biomaterials showing protein and cell repulsion, Surface and Coatings Technology, 252 (2014) 126-133 [CrossRef] [Google Scholar]
  85. D. Perera-Costa, J.M. Bruque, M.a.L. González-Martín, A.C. Gómez-García, V. Vadillo-Rodriguez, Studying the Influence of Surface Topography on Bacterial Adhesion using Spatially Organized Microtopographic Surface Patterns, Langmuir, 30 (2014) 4633-4641 [CrossRef] [Google Scholar]
  86. J. Cui, Y. Ju, K. Liang, H. Ejima, S. Lorcher, K.T. Gause, J.J. Richardson, F. Caruso, Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides, Soft Matter, 10 (2014) 2656-2663 [CrossRef] [Google Scholar]
  87. S. Jiang, Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications, Advanced materials, 22 (2010) 920-932 [CrossRef] [Google Scholar]
  88. M. Hess, R. Jones, J. Kahovec, T. Kitayama, P. Kratochvil, P. Kubisa, W. Mormann, R. Stepto, D. Tabak, J. Vohlidal, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006), Pure and Applied Chemistry, 78 (2006) 2067-2074 [CrossRef] [Google Scholar]
  89. H.-W. Chien, C.-C. Tsai, W.-B. Tsai, M.-J. Wang, W.-H. Kuo, T.-C. Wei, S.-T. Huang, Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption, Colloids and Surfaces B: Biointerfaces, 107 (2013) 152-159 [CrossRef] [Google Scholar]
  90. W. Feng, S. Zhu, K. Ishihara, J.L. Brash, Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains, Biointerphases, 1 (2006) 50-60 [CrossRef] [Google Scholar]
  91. Y. He, J. Hower, S. Chen, M.T. Bernards, Y. Chang, S. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water, Langmuir, 24 (2008) 10358-10364 [CrossRef] [Google Scholar]
  92. H. Zhang, J. Zou, N. Lin, B. Tang, Review On Electroless Plating Ni–P Coatings For Improving Surface Performance Of Steel, Surface Review and Letters, (2014) [Google Scholar]
  93. J. Novakovic, P. Vassiliou, K. Samara, T. Argyropoulos, Electroless NiP–TiO 2 composite coatings: Their production and properties, Surface and Coatings Technology, 201 (2006) 895-901 [CrossRef] [Google Scholar]
  94. W. Chen, W. Gao, Y. He, A novel electroless plating of Ni–P––TiO 2 nano-composite coatings, Surface and Coatings Technology, 204 (2010) 2493-2498. [CrossRef] [Google Scholar]
  95. Q. Zhao, C. Liu, X. Su, S. Zhang, W. Song, S. Wang, G. Ning, J. Ye, Y. Lin, W. Gong, Antibacterial characteristics of electroless plating Ni–P–TiO2 coatings, Applied Surface Science, 274 (2013) 101-104 [CrossRef] [Google Scholar]
  96. X.-P. Wang, Y. Yu, X.-F. Hu, L. Gao, Hydrophilicity of TiO 2 films prepared by liquid phase deposition, Thin Solid Films, 371 (2000) 148-152. [CrossRef] [Google Scholar]
  97. B. Li, B.E. Logan, The impact of ultraviolet light on bacterial adhesion to glass and metal oxide-coated surface, Colloids and Surfaces B: Biointerfaces, 41 (2005) 153-161 [CrossRef] [Google Scholar]
  98. Al-Janabi, M. Malayeri, H. Muller-Steinhagen, Minimization of CaSO4 deposition through surface modification, Heat transfer engineering, 32 (2011) 291-299 [CrossRef] [Google Scholar]
  99. F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles, Polymers, 4 (2012) 46-71 [CrossRef] [Google Scholar]
  100. P.N. Coneski, P.A. Fulmer, J.H. Wynne, Enhancing the fouling resistance of biocidal urethane coatings via surface chemistry modulation, Langmuir, 28 (2012) 7039-7048 [CrossRef] [Google Scholar]
  101. R. Kumar, H. Munstedt, Silver ion release from antimicrobial polyamide/silver composites, Biomaterials, 26 (2005) 2081-2088 [CrossRef] [Google Scholar]
  102. A.W. Smith, Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems?, Advanced drug delivery reviews, 57 (2005) 1539-1550 [CrossRef] [Google Scholar]
  103. M. Simões, L.C. Simões, M.J. Vieira, A review of current and emergent biofilm control strategies, LWT - Food Science and Technology, 43 (2010) 573-583 [CrossRef] [Google Scholar]
  104. P.N. Coneski, M.H. Schoenfisch, Synthesis of nitric oxide-releasing polyurethanes with S-nitrosothiol-containing hard and soft segments, Polymer chemistry, 2 (2011) 906-913 [CrossRef] [Google Scholar]
  105. J.C. Tiller, C.-J. Liao, K. Lewis, A.M. Klibanov, Designing surfaces that kill bacteria on contact, Proceedings of the National Academy of Sciences, 98 (2001) 5981-5985 [CrossRef] [Google Scholar]
  106. J.W. Mayer, L. Eriksson, J.A. Davies, Ion implantation in semiconductors: silicon and germanium, (1970) [Google Scholar]
  107. M. Dhillon, The effect of silver ion-implantation of stainless steel on bacterial adhesion and biofilm formation, in: Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, 2012 [Google Scholar]
  108. H. Muller-Steinhagen, Q. Zhao, Investigation of low fouling surface alloys made by ion implantation technology, Chemical Engineering Science, 52 (1997) 3321-3332 [CrossRef] [Google Scholar]
  109. Q. Zhao, B. Burnside, Dropwise condensation of steam on ion implanted condenser surfaces, Heat Recovery Systems and CHP, 14 (1994) 525-534 [CrossRef] [Google Scholar]
  110. Nejim, C. Jeynes, Q. Zhao, H. Muller-Steinhagen, Ion implantation of stainless steel heater alloys for anti-fouling applications, in: Ion Implantation Technology Proceedings, 1998 International Conference on, IEEE, 1999, pp. 869-872 [Google Scholar]
  111. Q. Zhao, Y. Liu, C. Wang, S. Wang, N. Peng, C. Jeynes, Reduction of bacterial adhesion on ion-implanted stainless steel surfaces, Medical engineering & physics, 30 (2008) 341-349 [CrossRef] [Google Scholar]
  112. M. Beuf, G. Rizzo, J. Leuliet, H. Muller-Steinhagen, S. Yiantsios, A. Karabelas, T. Benezech, Fouling and cleaning of modified stainless steel plate heat exchangers processing milk products, Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, 14 (2003) [Google Scholar]
  113. D. Quain, E. Storgårds, The extraordinary world of biofilms, PloS Biology, 5 (2009) 2458-2461 [Google Scholar]
  114. D. Merche, N. Vandencasteele, F. Reniers, Atmospheric plasmas for thin film deposition: A critical review, Thin Solid Films, 520 (2012) 4219-4236 [CrossRef] [Google Scholar]
  115. R. Rosmaninho, F. Rocha, G. Rizzo, H. Muller-Steinhagen, L. Melo, Calcium phosphate fouling on TiN-coated stainless steel surfaces: Role of ions and particles, Chemical Engineering Science, 62 (2007) 3821-3831 [CrossRef] [Google Scholar]
  116. R. Rosmaninho, G. Rizzo, H. Muller-Steinhagen, L. Melo, Deposition from a milk mineral solution on novel heat transfer surfaces under turbulent flow conditions, Journal of Food Engineering, 85 (2008) 29-41 [CrossRef] [Google Scholar]
  117. X. Hou, K.L. Choy, Processing and Applications of Aerosol–Assisted Chemical Vapor Deposition, Chemical vapor deposition, 12 (2006) 583-596 [CrossRef] [Google Scholar]
  118. R.G. Palgrave, I.P. Parkin, Aerosol assisted chemical vapour deposition of photochromic tungsten oxide and doped tungsten oxide thin films, Journal of Materials Chemistry, 14 (2004) 2864-2867 [CrossRef] [Google Scholar]
  119. K. Choy, Chemical vapour deposition of coatings, Progress in materials science, 48 (2003) 57-170 [CrossRef] [Google Scholar]
  120. C.R. Crick, S. Ismail, J. Pratten, I.P. Parkin, An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition, Thin Solid Films, 519 (2011) 3722-3727 [CrossRef] [Google Scholar]
  121. R. Hauert, A review of modified DLC coatings for biological applications, Diamond and Related Materials, 12 (2003) 583-589 [CrossRef] [Google Scholar]
  122. C. Boxler, W. Augustin, S. Scholl, Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures, Food and Bioproducts Processing, 91 (2013) 336-347 [CrossRef] [Google Scholar]
  123. G. Dearnaley, J.H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review, Surface and Coatings Technology, 200 (2005) 2518-2524 [CrossRef] [Google Scholar]
  124. C. Donnet, Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review, Surface and Coatings Technology, 100 (1998) 180-186 [CrossRef] [Google Scholar]
  125. Soininen, E. Kaivosoja, T. Sillat, S. Virtanen, Y.T. Konttinen, V.M. Tiainen, Osteogenic differentiation on DLC-PDMS-h surface, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2014) [Google Scholar]
  126. X. Su, Development and evaluation of anti-biofouling nano-composite coatings, in, University of Dundee, 2013 [Google Scholar]
  127. C. Liu, Q. Zhao, Y. Liu, S. Wang, E. Abel, Reduction of bacterial adhesion on modified DLC coatings, Colloids and Surfaces B: Biointerfaces, 61 (2008) 182-187 [CrossRef] [Google Scholar]
  128. X. Su, Q. Zhao, S. Wang, A. Bendavid, Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion, Surface and Coatings Technology, 204 (2010) 2454-2458 [CrossRef] [Google Scholar]
  129. M. Ishihara, T. Kosaka, T. Nakamura, K. Tsugawa, M. Hasegawa, F. Kokai, Y. Koga, Antibacterial activity of fluorine incorporated DLC films, Diamond and Related Materials, 15 (2006) 1011-1014 [CrossRef] [Google Scholar]
  130. C. Boxler, W. Augustin, S. Scholl, Influence of surface modification on the composition of a calcium phosphate-rich whey protein deposit in a plate heat exchanger, Dairy Science & Technology, 94 (2014) 17-31 [CrossRef] [Google Scholar]
  131. T.-S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477 (2011) 443-447 [CrossRef] [PubMed] [Google Scholar]
  132. H.F. Bohn, W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004) 14138-14143 [CrossRef] [Google Scholar]
  133. L. Xiao, J. Li, S. Mieszkin, A. Di Fino, A.S. Clare, M.E. Callow, J.A. Callow, M. Grunze, A. Rosenhahn, P.A. Levkin, Slippery Liquid-Infused Porous Surfaces Showing Marine Antibiofouling Properties, ACS applied materials & interfaces, 5 (2013) 10074-10080 [CrossRef] [Google Scholar]
  134. M. Nosonovsky, Materials science: Slippery when wetted, Nature, 477 (2011) 412-413 [CrossRef] [Google Scholar]
  135. J.D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinley, K.K. Varanasi, Droplet mobility on lubricant-impregnated surfaces, Soft Matter, 9 (2013) 1772-1780 [CrossRef] [Google Scholar]
  136. P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS), Physical Chemistry Chemical Physics, 15 (2013) 581-585 [CrossRef] [PubMed] [Google Scholar]
  137. C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, D. Quere, Wicking within forests of micropillars, EPL (Europhysics Letters), 79 (2007) 56005 [CrossRef] [Google Scholar]
  138. C. Howell, T.L. Vu, J.J. Lin, S. Kolle, N. Juthani, E. Watson, J.C. Weaver, J. Alvarenga, J. Aizenberg, Self-replenishing vascularized fouling-release surfaces, ACS applied materials & interfaces, (2014) [Google Scholar]
  139. S.B. Subramanyam, G. Azimi, K.K. Varanasi, Designing Lubricant-Impregnated Textured Surfaces to Resist Scale Formation, Advanced Materials Interfaces, 1 (2014) [Google Scholar]
  140. K.S. Khalil, S.R. Mahmoudi, N. Abu-dheir, K.K. Varanasi, Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets, Applied Physics Letters, 105 (2014) 041604 [CrossRef] [Google Scholar]
  141. A.K. Epstein, D. Hong, P. Kim, J. Aizenberg, Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces, New Journal of Physics, 15 (2013) 095018 [CrossRef] [Google Scholar]
  142. S.Y.-E. Tan, S.C. Chew, S.Y.-Y. Tan, M. Givskov, L. Yang, Emerging frontiers in detection and control of bacterial biofilms, Current opinion in biotechnology, 26 (2014) 1-6 [CrossRef] [Google Scholar]
  143. P. Kim, T.-S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno-Martinez, J. Aizenberg, Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance, ACS Nano, 6 (2012) 6569-6577 [CrossRef] [PubMed] [Google Scholar]
  144. S.B. Subramanyam, K. Rykaczewski, K.K. Varanasi, Ice adhesion on lubricant-impregnated textured surfaces, Langmuir, 29 (2013) 13414-13418 [CrossRef] [PubMed] [Google Scholar]
  145. T. Awad, H. Moharram, O. Shaltout, D. Asker, M. Youssef, Applications of ultrasound in analysis, processing and quality control of food: A review, Food Research International, 48 (2012) 410-427 [CrossRef] [Google Scholar]
  146. J. Mason, F. Chemat, M. Vinatoru, The extraction of natural products using ultrasound or microwaves, Current Organic Chemistry, 15 (2011) 237-247 [CrossRef] [Google Scholar]
  147. K.S. Suslick, The chemical effects of ultrasound, Scientific American, 260 (1989) 80-86 [Google Scholar]
  148. F. Chemat, H. Zill e, M.K. Khan, Applications of ultrasound in food technology: Processing, preservation and extraction, Ultrasonics Sonochemistry, 18 (2011) 813-835 [Google Scholar]
  149. E. Joyce, S. Phull, J. Lorimer, T. Mason, The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species, Ultrasonics Sonochemistry, 10 (2003) 315-318 [Google Scholar]
  150. P. Piyasena, E. Mohareb, R. McKellar, Inactivation of microbes using ultrasound: a review, International journal of food microbiology, 87 (2003) 207-216 [CrossRef] [PubMed] [Google Scholar]
  151. E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing, 30 (1999) 1055-1071 [CrossRef] [Google Scholar]
  152. J. Ahmed, H.S. Ramaswamy, Microwave pasteurization and sterilization of foods, Food Science And Technology-New York-Marcel Dekker-, 167 (2004) 691 [Google Scholar]
  153. D.E. Clark, W.H. Sutton, Microwave processing of materials, Annual Review of Materials Science, 26 (1996) 299-331 [CrossRef] [Google Scholar]
  154. J. Smith, The assessment of structure and component mobility of Mozzarella cheese, in: Department of Food Science & Technology, Massey University, Palmerston North, 2013 [Google Scholar]
  155. S.O. Nelson, Dielectric properties of agricultural products: measurements and applications, IEEE Transactions on Electrical Insulation, 26 (1991) 845-869 [CrossRef] [Google Scholar]
  156. J. Smith, A. Carr, M. Golding, D. Reid, L. Zhang, Assessing the use of dielectric spectroscopy to analyse calcium induced compositional and structural changes in a model cheese, Procedia Food Science, 1 (2011) 1833-1840 [CrossRef] [Google Scholar]
  157. M.A. Rao, S.S. Rizvi, A.K. Datta, J. Ahmed, Engineering properties of foods, CRC Press, 2014 [CrossRef] [Google Scholar]
  158. E. Nyfors, P. Vainikainen, Industrial microwave sensors, Artech House Norwood (MA, USA), 1989 [Google Scholar]
  159. S. Ryynänen, The electromagnetic properties of food materials: a review of the basic principles, Journal of Food Engineering, 26 (1995) 409-429 [CrossRef] [Google Scholar]
  160. Herve, J. Tang, L. Luedecke, H. Feng, Dielectric properties of cottage cheese and surface treatment using microwaves, Journal of Food Engineering, 37 (1998) 389-410 [CrossRef] [Google Scholar]
  161. H. Feng, Y. Yin, J. Tang, Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling, Food Engineering Reviews, 4 (2012) 89-106 [CrossRef] [Google Scholar]
  162. R.V. Decareau, R.A. Peterson, Microwave processing and engineering, VCH, 1986 [Google Scholar]
  163. M. Venkatesh, G. Raghavan, An overview of dielectric properties measuring techniques, Canadian biosystems engineering, 47 (2005) 15-30 [Google Scholar]
  164. C. Tong, R. Lentz, J. Rossen, Dielectric properties of pea puree at 915 MHz and 2450 MHz as a function of temperature, Journal of food science, 59 (1994) 121-122 [CrossRef] [Google Scholar]
  165. C. Salazar-González, M.F. San Martín-González, A. López-Malo, M.E. Sosa-Morales, Recent studies related to microwave processing of fluid foods, Food and bioprocess technology, 5 (2012) 31-46 [CrossRef] [Google Scholar]
  166. R. Vadivambal, D. Jayas, Non-uniform temperature distribution during microwave heating of food materials—A review. Food and bioprocess technology, 3 (2010) 161-171 [CrossRef] [Google Scholar]
  167. M. Zhang, J. Tang, A. Mujumdar, S. Wang, Trends in microwave-related drying of fruits and vegetables, Trends in Food Science & Technology, 17 (2006) 524-534 [Google Scholar]
  168. S. Chandrasekaran, S. Ramanathan, T. Basak, Microwave food processing—A review. Food Research International, 52 (2013) 243-261 [CrossRef] [Google Scholar]
  169. Z.-W. Cui, L.-J. Sun, W. Chen, D.-W. Sun, Preparation of dry honey by microwave.vacuum drying, Journal of Food Engineering, 84 (2008) 582-590 [CrossRef] [Google Scholar]
  170. P.A. Picouet, A. Landl, M. Abadias, M. Castellari, I. Viñas, Minimal processing of a Granny Smith apple purée by microwave heating, Innovative Food Science & Emerging Technologies, 10 (2009) 545-550 [CrossRef] [Google Scholar]
  171. R.I. Guzmán-Gerónimo, M.G. López, L. Dorantes-Alvarez, Microwave processing of avocado: Volatile flavor profiling and olfactometry, Innovative Food Science & Emerging Technologies, 9 (2008) 501-506 [CrossRef] [Google Scholar]
  172. Fratianni, L. Cinquanta, G. Panfili, Degradation of carotenoids in orange juice during microwave heating, LWT-Food Science and Technology, 43 (2010) 867-871 [CrossRef] [Google Scholar]
  173. S. Tajchakavit, H. Ramaswamy, P. Fustier, Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating, Food Research International, 31 (1998) 713-722 [CrossRef] [Google Scholar]
  174. K.N. Matsui, J.A.W. Gut, P.V. De Oliveira, C.C. Tadini, Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing, Journal of Food Engineering, 88 (2008) 169-176 [CrossRef] [Google Scholar]
  175. M. Igual, E. García-Martínez, M. Camacho, N. Martínez-Navarrete, Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice, Food Chemistry, 118 (2010) 291-299 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.