Open Access
MATEC Web Conf.
Volume 182, 2018
17th International Conference Diagnostics of Machines and Vehicles
Article Number 01021
Number of page(s) 8
Section Diagnostics of Machines and Vehicles
Published online 30 July 2018
  1. L. Boaz, S. Kaijage, R. Sinde, An overview of pipeline leak detection and location systems. In: Science, Computing and Telecommunications (PACT), 2014 Pan African Conference on. IEEE;133—137 (2014). [CrossRef] [Google Scholar]
  2. API 1130, Computational pipeline monitoring (2nd ed.), American Petroleum Institute, Washington, DC, USA (2002) [Google Scholar]
  3. W. Liang, L. Zhang, A wave change analysis (WCA) methodfor pipeline leak detection using Gaussian mixture model, Journal of Loss Prevention in the Process Industries, 25, Issue 1, pp. 60-69, (2012) [CrossRef] [Google Scholar]
  4. L. Billman, R. Isermann, Leak detection methods for pipelines, Automatica, 23, no. 3, 381-385, (1987). [Google Scholar]
  5. P. Ostapkowicz, Leakage detection from liquid transmission pipelines using improved pressure wave technique, Maintenance and Reliability, 16, no. 1, 9-16 (2014) [Google Scholar]
  6. K. E. Abdulimen, A. A. Susu, Liquid pipeline leak detection system: model development and numerical simulation, Chemical Engineering Journal, 97, Issue 1, (2004). [Google Scholar]
  7. Z. Kowalczuk, K. Gunawickrama, Detecting and locating leaks in transmission pipelines. In J. Korbicz, J. Koś cielny, Z. Kowalczuk, W. Cholewa (Eds.): Fault diagnosis. Models, Artifical Intelligence, Applications, Chapter 21, 821-864 (2004) [Google Scholar]
  8. P. Lindstedt, Weak interactions between objects in the signal-based and parametric diagnostics of transport-dedicated complex engineering systems, Aircraft Engineering and Aerospace Technology, 77, no. 3, 222-227 (2005). [Google Scholar]
  9. A. E. Liu,. Overview: Pipeline Accounting and Leak Detection by Mass Balance, Theory and Hardware Implementation (2008) [Google Scholar]
  10. R. Grą dzki, K. Golak, P. Lindstedt, B. Bartoszewicz, Reasons for the experimental research of gas outflows based on the signals of weak interactions between the tested model of the gas pipeline, and tested equalizer. Journal of Konbin, 2, 39-48, (2015) [Google Scholar]
  11. R. Grą dzki, P. Lindstedt, Method of assessment of technical object aptitude in environment of exploitation and service conditions. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 1; 54-63 (2015), http://dx.doi.Org/10.17531/ein.2015.1.8 [Google Scholar]
  12. R. Grą dzki, P. Lindstedt, K. Golak, Premises of evaluation of the technical object suitability with including the quality of its maintenance and operation, and their initial conditions. In: Safety and Reliability: Methodology and Applications-Proceedings of the European Safety and Reliability Conference, chapter 44; 319 -326 (2015) [Google Scholar]
  13. S. L. Scott M. A. Barrufet, Worldwide Assessment of Industry Leak Detection Capabilities for Single 8 Multiphase Pipelines, Project Report Prepared for the Minerals Management Service, OTRC Library Number: 8/03A120, (2003). [Google Scholar]
  14. Y. Sivathanu, Natural Gas Leak Detection in Pipelines. U.S. Department of Energy, National Energy Technology Laboratory, (2003). [Google Scholar]
  15. Tomasik P. Zastosowania modeli dokładnych sieci do detekcji i lokalizacji wycieków. In: Diagnostics of Processes and Systems, 507-512, (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.