Open Access
MATEC Web of Conferences
Volume 180, 2018
13th International Conference Modern Electrified Transport – MET’2017
Article Number 04004
Number of page(s) 6
Section New Technologies in Electrified Transport
Published online 27 July 2018
  1. J. Jiang, Z. Liu, and X. Lu, Optimization of the pantograph parameters based on matching performance between pantograph parameters and dropper interval, Proceedings of the 35th Chinese Control Conference, 9742-9747 (2016) [Google Scholar]
  2. J.-P. Massat, C. Laurent, J.-P. Bianchi, and E. Balmès, Pantograph catenary dynamic optimisation based on advanced multibody and finite element cosimulation tools, Vehicle System Dynamics, 52, 338-354 (2014) [CrossRef] [Google Scholar]
  3. T.X. Wu, and M.J. Brennan, Active vibration control of a railway pantograph, Proc. Inst. Mech. Eng. Part F: Journal of Rail Rapid Transit, 211, 117-130 (1997) [CrossRef] [Google Scholar]
  4. T.X. Wu, and M.J. Brennan, Basic Analytical Study of Pantograph-catenary System Dynamics, Vehicle System Dynamics, 30, 443-456 (1998) [CrossRef] [Google Scholar]
  5. J. Ambrósio, F. Rauter, J. Pombo, and M.S. Pereira, A Flexible Multibody Pantograph Model for the Analysis of the Catenary-Pantograph Contact, in: K. Arczewski, W. Blajer, J. Fraczek, M. Wojtyra, (Eds.), Multibody Dynamics: Computational Methods and Applications. Springer Netherlands, Dordrecht, 1-27 (2011) [Google Scholar]
  6. J.P. Bianchi, E. Balmès, G.V. des Roches, and A. Bobillot, Using modal damping for full model transient analysis. Application to pantograph/catenary vibration, Proc. of the Int. Conf. on Adv. Acoustics and Vibration Eng. ISMA 2010, Leuven Belgium, 1167-1180 (2010) [Google Scholar]
  7. C. Zhao, N. Zhou, H. Zou, R. Li, R., and W. Zhang, Comparison of dynamic characteristics of different pantograph models, Proceedings of the 35th Chinese Control Conference, 10216-10221 (2016) [Google Scholar]
  8. N. Zhou, W. Zhang, and R. Li, Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces, Journal of Zhejiang University-SCIENCE A, 12, 913-920 (2011) [CrossRef] [Google Scholar]
  9. AUTODESK Inventor, [Google Scholar]
  10. A. Wilk, K. Karwowski, S. Judek, and M. Mizan, A new approach to determination of the two-mass model parameters of railway current collector, 12th Int. Conf. Modern Electrified Transport MET’2015, Trogir, Croatia, 164-170 (2015). [Google Scholar]
  11. S. Judek, and L. Jarzebowicz, Wavelet Transform-Based Approach to Defect Identification in Railway Carbon Contact Strips, Elektronika Ir Elektrotechnika, 21 (6), 29-33 (2015) [CrossRef] [Google Scholar]
  12. Karwowski, K., Mizan, M., Karkosiński, D., Monitoring of current collectors on the railway line, Transport, 33, 177-185 (2018) [CrossRef] [Google Scholar]
  13. P. Lengvarský, and J. Bocko, Theoretical Basis of Modal Analysis, Am. J. Mech. Eng., 1 (7), 173-179 (2013) [Google Scholar]
  14. G. Santamato, M. Solazzi, and A. Frisoli, A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots, World Acad. Sci. Eng. Technol. Int. J. of Mech. and Mechatr. Eng., 10 (8), 1474-1485 (2016) [Google Scholar]
  15. Commission Regulation (EU) No 1301/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘energy’ subsystem of the rail system in the Union (2104) [Google Scholar]
  16. EN 50318, Railway applications. Current collection systems. Validation of simulation of the dynamic interaction between pantograph and overhead contact line (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.