Open Access
MATEC Web Conf.
Volume 175, 2018
2018 International Forum on Construction, Aviation and Environmental Engineering-Internet of Things (IFCAE-IOT 2018)
Article Number 02002
Number of page(s) 5
Section Building Equipment Automation
Published online 02 July 2018
  1. P.W. Wallace, C. Andrew, Machining forces: Some effects of tool vibration, Journal of Mechanical Engineering Science 7, 152-162 (1965) [CrossRef] [Google Scholar]
  2. T.R. Sisson, R.L. Kegg, An explanation of low-speed chatter effects, Journal of Engineering for Industry 91, 951-958 (1969) [CrossRef] [Google Scholar]
  3. J. Peters, P. Vanherck, H.V. Brussel, The measurement of the dynamic cutting coefficient, Annals of the CIRP 21/2, 129-136 (1971) [Google Scholar]
  4. J. Tlusty, Analysis of the state of research in cutting dynamics, Annals of the CIRP 27/2, 583-589 (1978) [Google Scholar]
  5. Y. Altintas, M. Eynian, H. Onozuka, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Ann. Manuf. Technol 57, 371–374 (2008) [Google Scholar]
  6. E. Budak, L.T. Tunc, A new method for identification and modeling of process damping in machining, J. Manuf. Sci. Eng. 131 (2009) [Google Scholar]
  7. L.T. Tunc, E. Budak, Identification and modeling of process damping in milling, J. Manuf. Sci. Eng. 135, 2100-2111 (2013) [Google Scholar]
  8. Y. Kurata, S.D. Merdol, Y. Altintas,, N. Suzuki, E. Shamoto, Chatter stability in turning and milling with in process identified process damping, J. Adv. Mech. Des. Syst. Manuf. 4, 1107–1118 (2010) [Google Scholar]
  9. A.R. Yusoff,, S. Turner, C.M. Taylor, N.D. Sims, The role of tool geometry in process damped milling, Int. J. Adv. Manuf. Technol. 50, 883–895 (2010) [Google Scholar]
  10. D.W. Wu, A new approach of formulating the transfer function for dynamic cutting processes,, J. Manuf. Sci. Eng. 111, 37–47 (1989) [Google Scholar]
  11. R.Y. Chiou, S.Y. Liang, Chatter stability of a slender cutting tool in turning with tool wear effect, Int. J. Mach. Tools Manuf. 38, 315–327 (1998) [CrossRef] [Google Scholar]
  12. C.Y. Huang, J.J. Wang, Mechanistic modeling of process damping in peripheral milling, J. Manuf. Sci. Eng. 129, 12–20 (2007) [CrossRef] [Google Scholar]
  13. K. Ahmadi, F. Ismail, Analytical stability lobes including nonlinear process damping effect on machining chatter, Int. J. Mach. Tools Manuf. 51, 296–308 (2011) [CrossRef] [Google Scholar]
  14. C. Cao, X.M. Zhang, H. Ding, An improved algorithm for cutting stability estimation considering process damping. Int. J. Adv. Manuf. Technol. 88, 2029–2038 (2017) [CrossRef] [Google Scholar]
  15. J.M. Karandikar, C.T. Tyler, T.L. Schmitz, Process Damping Coefficient Identification using Bayesian Inference, Proceedings of NAMRC/SME 41, 1-11 (2013) [Google Scholar]
  16. C.M. Zheng, J.J. Wang and, C.F. Sung, Analytical prediction of the critical depth of cut and worst spindle speeds for chatter in end milling, ASME Journal of Manufacturing Science and Engineering, 136 (2013) [Google Scholar]
  17. J.J. Wang, C.M. Zheng, An analytical force model with shearing and ploughing mechanisms for end milling, International Journal of Machine Tools & Manufacture 42, 761-771 (2002) [CrossRef] [Google Scholar]
  18. E. Budak, Y. Altintas, An Analytical Prediction of Chatter Stability in Milling – Part I: General Formulation, ASME Journal of Dynamic Systems, Measurement and Control 120, 22-30 (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.