Open Access
Issue
MATEC Web Conf.
Volume 174, 2018
3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018)
Article Number 02016
Number of page(s) 10
Section Material Engineering, Waste Management in Civil Engineering
DOI https://doi.org/10.1051/matecconf/201817402016
Published online 26 June 2018
  1. Europea Comision. Cerrar el círculo: un plan de acción de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones. Bruselas. p. 1-4, (2015). [Google Scholar]
  2. Sáez V., del Río Merino P., & Porras-Amores M.C., Estimation of construction and demolition waste volume generation in new residential buildings in Spain. Waste Management & Research, 30(2), 137-146. (2012). [CrossRef] [Google Scholar]
  3. Romaniga Pineiro S., del Rio Meriono M., Perez Garcia C., New plaster composite with mineral wool fibers from CDW recycling. Advances in Materials Science and Engineering, vol. 2015, p. 1, (2015). [CrossRef] [Google Scholar]
  4. Vantsi O., Karki T., Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. Journal of Material Cycles and Waste Management, vol. 16, no 1, p. 62-72. (2014). [CrossRef] [Google Scholar]
  5. Lawrence M., Reducing the environmental impact of construction by using renewable materials. Journal of Renewable Materials, vol. 3, no 3, p. 163-174. (2015). [CrossRef] [Google Scholar]
  6. Walker R., Pavia S., Effect of Hemp'S Soluble Components on the Physical Properties of Hemp Concrete. Journal of Materials Science Research, vol. 3, no 3, p. 12. (2014). [CrossRef] [Google Scholar]
  7. Haas W., et al., How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. Journal of Industrial Ecology, vol. 19, no 5, p. 765-777. (2015). [CrossRef] [Google Scholar]
  8. DU H., TANK. H., Waste glass powder as cement replacement in concrete. Journal of Advanced Concrete Technology, vol. 12, no 11, p. 468-477. (2014). [CrossRef] [Google Scholar]
  9. Zhi G., Renjuan S., Kun Z., Zhili G., Pengcheng L., Physical and mechanical properties of mortar using waste Polyethylene Terephthalate bottles. Construction and Building Materials, vol. 44, p. 81-86. (2013). [CrossRef] [Google Scholar]
  10. Halvaei, M., Jamshidi, M., & Latifi, M., Application of low modulus polymeric fibers in engineered cementitious composites. Journal of industrial textiles, 43(4), p. 511-524. (2014). [CrossRef] [Google Scholar]
  11. Jamrozik, E. D., De Klerk, N., & Musk, A. W., Asbestos-related disease. Internal medicine journal, 41(5), p. 372-380. (2011). [CrossRef] [Google Scholar]
  12. Pakravan, H. R., Jamshidi, M., & Latifi, M., Investigation on polymeric fibers as reinforcement in cementitious composites: Flexural performance. Journal of industrial textiles, 42(1), p. 3-18. (2012). [CrossRef] [Google Scholar]
  13. Kosior-Kazberuk M., Krassowska J., Fracture behaviour of basalt and steel fiber reinforced concrete. Budownictwo i Inżynieria Środowiska, vol. 6, p. 73-80. (2015). [Google Scholar]
  14. Juárez-Alvarado, C. A., González López, J. R., Mendoza-Rangel, J. M., & Zaldivar Cadena, A. A., Compuestos cementantes fibroreforzados de bajo impacto ambiental comportamiento mecánico. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, 7(2), p. 45, (2017). [Google Scholar]
  15. Recommendation TC 50-FMT RILEM., Determination of the fracture energy of mortars and concretes by means of three-point bend tests on notched beams. Materials and Structures, 18, p. 285-290. (1985). [Google Scholar]
  16. Recommendation TC 89-FMT RILEM., Determination of fracture parameters (s Ic K and CTODc) of plain concrete using three-point bend test. Materials and Structures, 23, p. 457-460. (1990). [CrossRef] [Google Scholar]
  17. Bordelon AC. Fracture behavior of concrete materials for rigid pavements system. MA Thesis. Graduate College of University of Illinois at Urbana-Champaign, USA, (2007). [Google Scholar]
  18. Jenq YS, Shah SP, Two parameter fracture model for concrete. Journal of Engineering mechanics, 111, p. 1227-1241. (1985). [Google Scholar]
  19. Shah SP, Swartz SE, Ouyang Ch., Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John Wiley & Sons,Inc., New York, (1995). [Google Scholar]
  20. Kosior-Kazberuk M., Variations in fracture energy of concrete subjected to cyclic freezing and thawing. Archives of Civil and Mechanical Engineering, 13, p. 254-259. (2013). [CrossRef] [Google Scholar]
  21. Voit K, Kirnbauer J., Tensile characteristics and fracture energy of fiber reinforced and non-reinforced ultra high performance concrete (UHPC). International Journal of Fracture, 188, p. 147-157. (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.