Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03042
Number of page(s) 5
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303042
Published online 19 June 2018
  1. Aggarwal, C. C. (2004). An Efficient Subspace Sampling Framework for High-Dimensional Data Reduction, Selectivity Estimation, and Nearest-Neighbor Search. IEEE Educational Activities Department. [Google Scholar]
  2. Perfilieva, Irina, Baets D, et al. Fuzzy transforms of monotone functions with application to image compression. Information Sciences, 180(17):3304-3315. [CrossRef] [Google Scholar]
  3. Muñoz, A., Blu, T., & Unser, M. (2001). Least-squares image resizing using finite differences. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 10(9), 1365. [CrossRef] [Google Scholar]
  4. Mukherjee, J., & Mitra, S. K. (2002). Image resizing in the compressed domain using subband dct. Circuits & Systems for Video Technology IEEE Transactions on, 12(7), 620-627. [CrossRef] [Google Scholar]
  5. Paternain, D., Bustince, H., Fernandez, J., & Beliakov, G. (2010). Image reduction with local reduction operators. IEEE International Conference on Fuzzy Systems (Vol.23, pp.1-8). IEEE. [Google Scholar]
  6. Paternain, D., Bustince, H., Fernandez, J., Beliakov, G., & Mesiar, R. (2010). Some Averaging Functions in Image Reduction. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (Vol.6098, pp.399-408). Springer Berlin Heidelberg. [Google Scholar]
  7. Paternain, D., Fernandez, J., Bustince, H., Mesiar, R., & Beliakov, G. (2015). Construction of image reduction operators using averaging aggregation functions. Fuzzy Sets & Systems, 261(C), 87-111. [CrossRef] [Google Scholar]
  8. Wilkin, T., Beliakov, G., & Calvo, T. (2014). Weakly monotone averaging functions. Communications in Computer & Information Science, 444, 364-373. [CrossRef] [Google Scholar]
  9. Wilkin, T. (2013). Image reduction operators based on non-monotonic averaging functions. IEEE International Conference on Fuzzy Systems(pp.1-8). IEEE. [Google Scholar]
  10. Calvo, T., & Beliakov, G. (2010). Aggregation functions based on penalties. Fuzzy Sets & Systems, 161(10), 1420-1436. [CrossRef] [Google Scholar]
  11. Beliakov, G., Li, G., Vu, H. Q., & Wilkin, T. (2015). Characterizing compactness of geometrical clusters using fuzzy measures. IEEE Transactions on Fuzzy Systems, 23(4), 1030-1043. [CrossRef] [Google Scholar]
  12. Li, L., & Chen, R. (2003). Bresenham-based 4-point line drawing algorithms. Journal of Jinan University. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.