Open Access
MATEC Web Conf.
Volume 171, 2018
The First International Conference on Energy, Power, Petroleum and Petrochemical Engineering (E3PE 2017)
Article Number 01002
Number of page(s) 6
Section Chapter 1: Renewable Energy
Published online 04 June 2018
  1. M.F. Mark, W. F. Maier, “CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal., vol. 164, pp. 122-130, 1996. [CrossRef] [Google Scholar]
  2. V. Y. Bychkov, O. V. Krylov, V. N. Korchak, “The Mechanistic Study of Methane Reforming with Carbon Dioxide on Ni/α-Al2O3”, Kinet. Catal., vol. 43, pp. 86-94, 2012. [CrossRef] [Google Scholar]
  3. J. L. Pinilla, I. Suelves, M. J. Lázaro, R. Moliner, J. M. Palacios, “Influence of nickel crystal domain size on the behaviour of Ni and NiCu catalysts for the methane decomposition reaction”, Appl. Catal., A, vol. 363, pp. 199-207, 2009. [CrossRef] [Google Scholar]
  4. M. Rezaei, S. M. Alavi, S. Sahebdelfar, Z. F. Yan, “Syngas production by methane reforming with carbon dioxide on noble metal catalysts”, J. Nat. Gas Chem., vol. 15, pp. 327-334, 2006. [CrossRef] [Google Scholar]
  5. J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong, C. Hu, “The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane”, Int. J. Hydrogen Energy, vol. 36, pp. 7094-7104, 2011. [CrossRef] [Google Scholar]
  6. Z. Alipour, M. Rezaei, F. Meshkani, “Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane”, J. Ind. Eng. Chem., vol. 20, pp. 2858-2863, 2014. [CrossRef] [Google Scholar]
  7. S. Yasyerli, S. Filizgok, H. Arbag, N. Yasyerli, G. Dogu, “Ru incorporated Ni–MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature”, Int. J. Hydrogen Energy, vol. 36, pp. 4863-4874, 2011. [CrossRef] [Google Scholar]
  8. D. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna, Y. Yang, “MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction”, J. Catal., vol. 266, pp. 380-390, 2009. [CrossRef] [Google Scholar]
  9. S. K. Talkhoncheh, M. Haghighi, “Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina”, J. Nat. Gas Sci. Eng., vol. 23, pp. 16-25, 2015. [CrossRef] [Google Scholar]
  10. M. N. Kaydouh, N. El Hassan, A. Davidson, S. Casale, H. El Zakhem, P. Massiani, “Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane”, Microporous Mesoporous Mater., vol. 220, pp. 99-109, 2016. [CrossRef] [Google Scholar]
  11. L. Karam, S. Casale, H. El Zakhem, N. El Hassan, “Tuning the properties of nickel nanoparticles inside SBA-15 mesopores for enhanced stability in methane reforming”, J. CO2 Utilization, vol. 17, pp. 119-124, 2017. [CrossRef] [Google Scholar]
  12. S. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, M., “Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane”, ACS Catal., vol. 3, pp. 1855-1864, 2013. [CrossRef] [Google Scholar]
  13. C. Jeffrey Brinker, Y. Lu, A. Sellinger, H. Fan, “Evaporation-Induced Self-Assembly: Nanostructures Made Easy”, Adv. Mater., vol. 11, No. 7, pp. 579-585, 1999. [CrossRef] [Google Scholar]
  14. D. Grosso, F. Cagnol, G. J. de A. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, C. Sanchez, “Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly”, Advanced Functional Materials, vol. 14(4), pp. 309-322, 2004. [CrossRef] [Google Scholar]
  15. W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, M. Reymermier, A. Pereira, M. Fontecave, V. Artero, C. Laberty-Robert, C. Sanchez, “Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation”, Phys. Chem. Chem. Phys., vol. 14, pp. 13224–13232, 2012. [CrossRef] [Google Scholar]
  16. W. Hamd, M. Chavarot-Kerlidou, J. Fize, G. Muller, A. Leyris, M. Matheron, E. Courtin, M. Fontecave, C. Sanchez, V. Arterob, C. Laberty-Robert, “Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications”, J. Mater. Chem. A, vol. 1, pp. 8217-8225, 2013. [CrossRef] [Google Scholar]
  17. C. F. Cheng, Y. C. Lin, H. H. Cheng, Y. C. Chen, “The effect and model of silica concentrations on physical properties and particle sizes of threedimensional SBA-16 nanoporous materials”, Chem. Phys. Lett., vol. 382, pp. 496-501, 2003. [CrossRef] [Google Scholar]
  18. S. M. L. dos Santos, K. A. B. Nogueira, M. de Souza Gama, J. D. F. Lima, I. J. da Silva Júnior, D. C. S. de Azevedo, “Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules”, Microporous Mesoporous Mater., vol. 180, pp. 284-292, 2013. [CrossRef] [Google Scholar]
  19. I. Lopes, N. El Hassan, H. Guerba, G. Wallez, A. Davidson, “Sizeinduced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas”, Chem. Mater., vol. 18, pp. 5826-5828, 2006. [CrossRef] [Google Scholar]
  20. K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, S. Casale, “Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane”, Chem. Eng. J., vol. 264, pp. 351-358, 2015. [CrossRef] [Google Scholar]
  21. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”, Pure Appl. Chem., vol. 87, pp. 1051-1069, 2015. [CrossRef] [Google Scholar]
  22. M. Kruk, C. M. Hui, “Thermally induced transition between open and closed spherical pores in ordered mesoporous silicas”, J. Am. Chem. Soc., vol. 130, pp.1528−1529, 2008. [CrossRef] [Google Scholar]
  23. T. Xie, L. Shi, J. Zhang, D. Zhang, “Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking-and sintering-resistant dry reforming of methane”, Chem. Commun., vol. 50, pp. 7250-7253, 2014. [CrossRef] [Google Scholar]
  24. J. A. C. Dias, J. M. Assaf, “Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane”, Catal. Today, vol. 85, pp. 59-68, 2003. [CrossRef] [Google Scholar]
  25. C. Zhang, W. Zhu, S. Li, G. Wu, X. Ma, X. Wang, J. Gong, “Sinteringresistant Ni-based reforming catalysts obtained via the nanoconfinement effect”, Chem. Commun., vol. 49, pp. 9383-9385, 2013. [CrossRef] [Google Scholar]
  26. B. Huang, X. Li, S. Ji, B. Lang, F. Habimana, C. Li, “Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane”, J. Nat. Gas Chem., vol. 17, pp. 225-231, 2008. [CrossRef] [Google Scholar]
  27. D. Kantorovich, L. Haviv, L. Vradman, M. V. Landau, “Behaviour of NiO and Ni0 phases at high loadings, in SBA-15 and SBA-16 mesoporous silica matrices”, Stud. Surf. Sci. Catal., vol. 156, pp. 147-154, 2005. [CrossRef] [Google Scholar]
  28. S. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, “Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane”, ACS Catal., vol. 3, pp. 1855-1864, 2013. [CrossRef] [Google Scholar]
  29. Z. L. Zhang, X. E. Verykios, “Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts”, Catal. Today, vol. 21, pp. 589-595, 1994. [CrossRef] [Google Scholar]
  30. Y. G. Chen, K. Tomishige, K. Fujimoto, “Formation and characteristic properties of carbonaceous species on nickel-magnesia solid solution catalysts during CH4 CO2 reforming reaction”, Appl. Catal., A, vol. 161, pp. L11-L17, 1997. [CrossRef] [Google Scholar]
  31. I. Luisetto, S. Tuti, C. Battocchio, S.L. Mastro, A. Sodo, “Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance”, Appl. Catal., A, vol. 500, pp. 12-22, 2015. [CrossRef] [Google Scholar]
  32. M. M. Nair, S. Kaliaguine, “Structured catalysts for dry reforming of methane”, New J. Chem., vol. 40, pp. 4049-4060, 2016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.