Open Access
Issue
MATEC Web of Conferences
Volume 166, 2018
The 2nd International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2018)
Article Number 03003
Number of page(s) 5
Section Thermal Theory and Applications
DOI https://doi.org/10.1051/matecconf/201816603003
Published online 23 April 2018
  1. F. Poggi, H. Macchi-Tejeda, D. Leducq, and A. Bontemps, Refrigerant charge in refrigerating systems and strategies of charge reduction, International Journal of Refrigeration, 31353-370, (2008). [Google Scholar]
  2. W. M. Kays and A. L. London. Compact Heat Exchangers. McGraw-Hill. New York. Second Edition. (1964). [Google Scholar]
  3. J.R. Thome, S. Nebuloni, “Numerical modeling of laminar annular film condensation for different channel shapes”, International Journal of Heat and Mass Transfer 53 (2010) 2615–2627. [CrossRef] [Google Scholar]
  4. E. Al-Hajri, A.H. Shooshtari, S. Dessiatoun, and M.M. Ohadi, Performance characterization of R134a and R245fa in a high aspect ratio micro channel condenser, International Journal of Refrigeration, 36 588-600 (2013). [CrossRef] [Google Scholar]
  5. J. Heo, H. Park, and R. Yun, Condensation heat transfer and pressure drop characteristics of CO2 in a micro channel, International Journal of Refrigeration, 36 1657-1668 (2013). [CrossRef] [Google Scholar]
  6. C.C. Wang, An overview for the heat transfer performance of HFO-1234yf, Renewable and Sustainable Energy Reviews, 19 444-453 (2013). [CrossRef] [Google Scholar]
  7. S.G. Kandlikar, N.J. English, An Experimental Investigation into the Effect of Surfactants on Air-Water Two-Phase Flow in Mini channels, Heat Transfer Engineering, 27 99-109 (2006). [Google Scholar]
  8. C.Y. Yang, R.L. Webb, Condensation of R-12 in small hydraulic diameter extruded aluminium tubes with and without micro-fins, International Journal of Heat and Mass Transfer, 39 791-800 (1996). [CrossRef] [Google Scholar]
  9. W.W. Akers, H.A. Deans, and O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Progr., 54 (1958). [Google Scholar]
  10. R.K. Shah, Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer, (1978). [Google Scholar]
  11. R.L. Webb, M. Zhang, and R. Narayanamurthy, Condensation heat transfer in small diameter tubes, Heat Transfer, 14 403-408 (1998). [Google Scholar]
  12. Shah, M. M. “A General Correlation for Heat Transfer During film Condensation inside Pipes”. Int. J. Heat and Mass Transfer, 22(4), 547–556 (1979). [CrossRef] [Google Scholar]
  13. K.W. Moser, B. Na, and R.L. Webb, A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes, Journal of Heat Transfer, 120 410-417 (1998). [CrossRef] [Google Scholar]
  14. A. a Cavallini,*, G. a Censi, D. a Del Col, L. Dorettia,G.A. b Longo, L. ossetto, “Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube”, International Journal of Refrigeration 24 73-87 (2001). [CrossRef] [Google Scholar]
  15. Dongsoo Jung*, Kil-hong Song, Youngmok Cho, Sin-jong Kim, “Flow condensation heat transfer coefficients of pure refrigerants”, International Journal of Refrigeration 26, 4–11 (2003). [CrossRef] [Google Scholar]
  16. Dobson, M. K., & Chato, J. C. “Condensation in Smooth Horizontal Tubes”. J. Heat Transfer, 120 (1), 193–213 (1998). [CrossRef] [Google Scholar]
  17. Akers, W. W., Deans, H. A., & Crosser, O. K., “Condensing Heat Transfer within Horizontal Tubes”, Chemical Engineering Progress Symposium Series, 55,171–176 (1959). [Google Scholar]
  18. Chen, S. L., Gerner, F. M., & Tien, C.L., “General film Condensation Correlation” Experimental Heat Transfer, 193–107 (1987). [Google Scholar]
  19. Matkovic, A. Cavallini, D. Del Col, L. Rossetto, Experimental study on condensation heat transfer inside a single circular mini channel, Int. J. Heat Mass Transfer 52 (2009) 2311–2323. [CrossRef] [Google Scholar]
  20. Cavallini a,, G. a Censi, D. a Del Col, L. a Doretti,G.A. b Longo, L. ossetto, “Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube”, International Journal of Refrigeration 24 73-87 (2001). [CrossRef] [Google Scholar]
  21. Dongsoo Jung*, Kil-hong Song, Youngmok Cho, Sin-jong Kim, “Flow condensation heat transfer coefficients of pure refrigerants”, International Journal of Refrigeration 26 4–11(2003). [CrossRef] [Google Scholar]
  22. Bohdal T., Charun H., Sikora M.: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Transfer 54(2011), 1963–1974. [CrossRef] [Google Scholar]
  23. Haraguchi, H., Koyama, S., Fujii, T., “Condensation of refrigerants HCFC 22, HFC 134a and HCFC 123 in a horizontal smooth tube”, (2nd report, proposals of empirical expressions for local heat transfer coefficient). Trans. JSME 60 245-252 (1994). [Google Scholar]
  24. D.P. Traviss, W.M. Rohsenow, and A.B. Baron, Forced Convection Condensation in tubes: A heat Transfer Correlation for condenser design, ASHRAE Transactions, 79 157-165(1973).Coleman J. [Google Scholar]
  25. W., Garimella S., Two phase flow regime transition in microchannel tube: the effect of hydraulic diameter, orlando, ASME, Heat transfer devision, 71-83 (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.