Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 22017
Number of page(s) 7
Section Posters
DOI https://doi.org/10.1051/matecconf/201816522017
Published online 25 May 2018
  1. T. Harris, M. Kotzalas, Rolling bearing analysis, 5th ed., CRC/Taylor & Francis, Boca Raton, FL (2007). [Google Scholar]
  2. S. Way, Pitting due to rolling contact, J Appl Mech. (1935) A49-A58. [Google Scholar]
  3. P. Rycerz, A. Olver, A. Kadiric, Propagation of surface initiated rolling contact fatigue cracks in bearing steel, International Journal of Fatigue. vol. 97 (2017) 29-38. [CrossRef] [Google Scholar]
  4. A. Olver, The Mechanism of Rolling Contact Fatigue: An Update, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. vol. 219 (2006) 313-330. [Google Scholar]
  5. C. Chue, H. Chung, Pitting formation under rolling contact, Theoretical and Applied Fracture Mechanics. vol. 34 (2000) 1-9. [CrossRef] [Google Scholar]
  6. G. Dambaugh, Fatigue Considerations of High Strength Rolling Bearing Steels, Schaeffler Group USA, Inc. (2006) 33. [Google Scholar]
  7. N. Soda, T. Yamamoto, Effect of Tangential Traction and Roughness on Crack Initiation/Propagation During Rolling Contact, A S L E Transactions. vol. 25 (2008) 198-206. [Google Scholar]
  8. S. Borgese, An Electron Fractographic Study of Spalls Formed in Rolling Contact, Journal of Basic Engineering. vol. 89 (1967) 943-. [CrossRef] [Google Scholar]
  9. J. Martin, A. Eberhardt, Identification of Potential Failure Nuclei in Rolling Contact Fatigue, Journal of Basic Engineering. vol. 89 (1967) 932-. [CrossRef] [Google Scholar]
  10. M. Ciavarella, F. Monno, A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue, Tribology International. vol. 43 (2010) 2139-2144. [CrossRef] [Google Scholar]
  11. S. Foletti, S. Beretta, M. Tarantino, Multiaxial fatigue criteria versus experiments for small crack under rolling contact fatigue, International Journal of Fatigue. vol. 58 (2014) 181-192. [CrossRef] [Google Scholar]
  12. E. Conrado, S. Foletti, C. Gorla, I. Papadopoulos, Use of multiaxial fatigue criteria and shakedown theorems in thermo-elastic rolling–sliding contact problems, Wear. vol. 270 (2011) 344-354. [CrossRef] [Google Scholar]
  13. B. Alfredsson, Applying multiaxial fatigue criteria to standing contact fatigue, International Journal of Fatigue. vol. 23 (2001) 533-548. [Google Scholar]
  14. H. Desimone, A. Bernasconi, S. Beretta, On the application of Dang Van criterion to rolling contact fatigue, Wear. vol. 260 (2006) 567-572. [CrossRef] [Google Scholar]
  15. M. Ciavarella, F. Monno, G. Demelio, On the Dang Van fatigue limit in rolling contact fatigue, International Journal of Fatigue. vol. 28 (2006) [Google Scholar]
  16. V. Dang, G. Cailletaud, J. Flavenot, A. Douaron, H. Liurade, Criterion for high cycle fatigue failure under multiaxial loading, ICBMFF2. (1986) 459-78. [Google Scholar]
  17. A. Bernasconi, P. Davoli, M. Filippini, S. Foletti, An integrated approach to rolling contact sub-surface fatigue assessment of railway wheels, Wear. vol. 258 (2005) 973-980. [CrossRef] [Google Scholar]
  18. A. Ekberg, E. Kabo, H. Andersson, An engineering model for prediction of rolling contact fatigue of railway wheels, Fatigue html_ent glyph="@amp;" ascii="&"/ Fracture of Engineering Materials and Structures. vol. 25 (2002) 899-909. [CrossRef] [Google Scholar]
  19. L. Houpert, F. Chevalier, Rolling Bearing Stress Based Life—Part I: Calculation Model, Journal of Tribology. vol. 134 (2012) 021103-. [CrossRef] [Google Scholar]
  20. Y. Liu, S. Mahadevan, Multiaxial high-cycle fatigue criterion and life prediction for metals, International Journal of Fatigue. vol. 27 (2005) 790-800. [Google Scholar]
  21. Y. Liu, B. Stratman, S. Mahadevan, Fatigue crack initiation life prediction of railroad wheels, International Journal of Fatigue. vol. 28 (2006) 747-756. [Google Scholar]
  22. B. Crossland, Effect of large hydrostatic pressure on the torsional fatigue strength of an alloy steel, Proc. Int. Conf. on Fatigue of Metals, Institution of Mechanical Engineers. (1956) 138-149. [Google Scholar]
  23. G. Sines, Behavior of metals under complex static and alternating stresses, Metal Fatigue. (1959) 145-469. [Google Scholar]
  24. A. Banvillet, A volumetric energy based high cycle multiaxial fatigue citerion, International Journal of Fatigue. vol. 25 (2003) 755-769. [Google Scholar]
  25. A. Carpinteri, A. Spagnoli, Multiaxial high-cycle fatigue criterion for hard metals, International Journal of Fatigue. vol. 23 (2001) 135-145. [Google Scholar]
  26. A. Bernasconi, Efficient algorithms for calculation of shear stress amplitude and amplitude of the second invariant of the stress deviator in fatigue criteria applications, International Journal of Fatigue. vol. 24 (2002) 649-657. [CrossRef] [Google Scholar]
  27. I. Papadopoulos, A comparative study of multiaxial high-cycle fatigue criteria for metals, International Journal of Fatigue. vol. 19 (1997) 219-235. [Google Scholar]
  28. C. Poeppelman, Axial and Torsion Fatigue of High Hardness Steels, A Thesis (2011). [Google Scholar]
  29. M. Roessle, Strain-controlled fatigue properties of steels and some simple approximations, International Journal of Fatigue. vol. 22 (n.d.) 495-511. [Google Scholar]
  30. D. McClaflin, Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects, International Journal of Fatigue. vol. 26 (2004) 773-784. [CrossRef] [Google Scholar]
  31. M. Vaculka, Návrh metodiky výpočtu životnosti valivého ložiska, Diploma Thesis (2006). [Google Scholar]
  32. L. Nohál, F. Hort, J. Dvořáček, P. Mazal, An experimental investigation of rolling contact fatigue of steels using acoustic emission method. Insight - Non-Destructive Testing and Condition Monitoring vol. 55 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.