Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 22016
Number of page(s) 8
Section Posters
DOI https://doi.org/10.1051/matecconf/201816522016
Published online 25 May 2018
  1. E. Charkaluk A. Bignonnet, A. Constantinescu, K. Dang Van. Fatigue design of structures under thermomechanical loadings. Fatigue Fract Eng M 25 (2002): 1199-1206. [CrossRef] [Google Scholar]
  2. H. Sehitoglu. Thermal and thermomechanical fatigue of structural alloys. ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA (1996): 527-556. [Google Scholar]
  3. A. Constantinescu, E. Charkaluk, G. Lederer, L. Verger. A computational approach to thermomechanical fatigue. Int J Fatigue, 26, 8 (2004): 805-818. [CrossRef] [Google Scholar]
  4. R.W. Neu, H. Sehitoglu. Thermomechanical Fatigue, Oxidation and Creep: Part I. Damage Mechanisms. Metall Trans A, 20, 9A (1989): 1755-1767. [CrossRef] [Google Scholar]
  5. R.W. Neu, H. Sehitoglu. Thermomechanical Fatigue, Oxidation and Creep: Part II. Life Prediction. Metall Trans A, 20, 9 (1989): 1769-1783. [CrossRef] [Google Scholar]
  6. M. Nagode, M. Hack, M. Fajdiga. Low cycle thermo-mechanical fatigue: Damage operator approach. Fatigue Fract Eng M 33 (2009): 149-160. [CrossRef] [Google Scholar]
  7. M. Nagode, F. Längler, M. Hack. A time-dependent damage operator approach to thermo-mechanical fatigue of Ni-resist D-5S. Int J Fatigue, 33, 5 (2011): 692-699. [CrossRef] [Google Scholar]
  8. K.N. Smith, P. Watson, T.H. Topper. A stress-strain function for the fatigue of metals. J Mater, JMLSA, 5, 4 (1970): 767-778. [Google Scholar]
  9. M. Nihei, P. Heuler, Ch. Boller, T. Seeger. Evaluation of mean stress effect on fatigue life by use of damage parameters. Int J Fatigue, 8, 3 (1986): 119-126. [CrossRef] [Google Scholar]
  10. J.-L. Chaboche, Time-independent constitutive theories for cyclic plasticity, Int J Plasticity 2, 2 (1986): 149-188. [CrossRef] [Google Scholar]
  11. J.-L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int J Plasticity 5, 3 (1989): 247-302. [CrossRef] [Google Scholar]
  12. J. Papuga, M. Vargas, M. Hronek. Evaluation of uniaxial fatigue criteria applied to multiaxially loaded unnotched samples. Engineer Mechan 19, 2/3 (2012): 99-111. [Google Scholar]
  13. M. Nagode, Continuous damage parameter calculation under thermomechanical random loading, MethodsX 1 (2014): 81-89. [Google Scholar]
  14. M. Nesládek, J. Jurenka, M. Lutovinov, M. Růžička, P. Měšt’ánek, J. Džugan. An assessment of thermomechanically induced fatigue damage of a steam turbine shaft. Procedia Struct Integrity, 7 (2017): 190-197. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.