Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 12001
Number of page(s) 7
Section Geomaterials and Concretes
Published online 25 May 2018
  1. D. Y. Yoo, N. Banthia, “Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review,” Cem. Concr. Compos., 73, (2016). [Google Scholar]
  2. D. Y. Yoo, S. Kim, G. J. Park, J. J. Park, and S. W. Kim, “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites,” Compos. Struct., 174, (2017). [Google Scholar]
  3. B. S. Al-Azzawi, B. L. Karihaloo, “Flexural Fatigue Behavior of a Self-Compacting Ultrahigh Performance Fiber-Reinforced Concrete,” J. Mater. Civ. Eng., 29, 11, (2017). [Google Scholar]
  4. C. M. Tam, V. W. Y. Tam, and K. M. Ng, “Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong,” Constr. Build. Mater., 26, 1, (2012). [CrossRef] [Google Scholar]
  5. G. Ruiz, A. Medeiros, X. X. Zhang, “Experimental Study of Loading Frequency Effect on Compressive Fatigue.”, An. Mec. Fract. 29, 9, (2011) [Google Scholar]
  6. Y. Chen, J. Ni, P. Zheng, R. Azzam, Y. Zhou, and W. Shao, “Experimental research on the behaviour of high frequency fatigue in concrete,” Eng. Fail. Anal., 18, 7, (2011). [Google Scholar]
  7. P. B. Cachim, J. A. Figueiras, P. A. A. Pereira, “Fatigue behavior of fiber-reinforced concrete in compression,” Cem. Concr. Compos., 24, 2, (2002). [CrossRef] [Google Scholar]
  8. M. Á. Pindado, A. Aguado, A. Josa, “Fatigue behavior of polymer-modified porous concretes,” Cem. Concr. Res., 29, 7, (1999). [Google Scholar]
  9. R. Tepfers, “Tensile Fatigue Strength of Plain Concrete,” ACI J. Proc., 76, 8, (1979). [Google Scholar]
  10. Y. Mohammadi, S. K. Kaushik, “Flexural Fatigue-Life Distributions of Plain and Fibrous Concrete at Various Stress Levels,” J. Mater. Civ. Eng., 17, 6, (2005). [CrossRef] [Google Scholar]
  11. J. D. Ríos, H. Cifuentes, R. Yu, G. Ruiz, “Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete,” Materials, 10, 7, (2017). [Google Scholar]
  12. X. P. Shi, T. F. Fwa, S. A. Tan, “Flexural Fatigue Strength of Plain Concrete,”, Materials Journal, 90, (1994). [Google Scholar]
  13. B. S. Al-Azzawi, B. L. Karihaloo, “Flexural Fatigue Behavior of a Self-Compacting Ultrahigh Performance Fiber-Reinforced Concrete,” J. Mater. Civ. Eng., 29, 11, (2017). [Google Scholar]
  14. M. C. Alonso, J. Vera-Agullo, L. Guerreiro, V. Flor-Laguna, M. Sanchez, M. Collares-Pereira, “Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants,” Cem. Concr. Res., 82, (2016). [CrossRef] [Google Scholar]
  15. E. Özrahat, S. Ünalan, “Thermal performance of a concrete column as a sensible thermal energy storage medium and a heater,” Renew. Energy, 111, (2017). [Google Scholar]
  16. F. Bai, C. Xu, “Performance analysis of a two-stage thermal energy storage system using concrete and steam accumulator,” Appl. Therm. Eng., 31, 14–15, (2011). [CrossRef] [Google Scholar]
  17. M. Hazami, S. Kooli, M. Lazâar, A. Farhat, A. Belghith, “Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix,” Energy Convers. Manag., 51, 6, (2010). [CrossRef] [Google Scholar]
  18. F. B. Varona, F. J. Baeza, D. Bru, S. Ivorra, “Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete,” Constr. Build. Mater., 159, (2018). [CrossRef] [Google Scholar]
  19. A. H. Akca, N. Özyurt, “Effects of re-curing on residual mechanical properties of concrete after high temperature exposure,” Constr. Build. Mater., 159, (2018). [Google Scholar]
  20. I. Hager, “Behaviour of cement concrete at high temperature,” Bulletin of the Polish Academy of Sciences, 61, (2013). [Google Scholar]
  21. H. Cifuentes, C. Leiva, F. Medina, C. Fernández-Pereira, “Effects of fibers and rice husk ash on properties of heated high-strength concrete,” Mag. Concr. Res., 64, 5, (2012). [CrossRef] [Google Scholar]
  22. T. Drzymała, W. Jackiewicz-Rek, M. Tomaszewski, A. Kuś, J. Gałaj, R. Šukys, “Effects of High Temperature on the Properties of High Performance Concrete (HPC),” Procedia Eng., 172, (2017). [Google Scholar]
  23. G. F. Peng, W. W. Yang, J. Zhao, Y. F. Liu, S. H. Bian, L. H. Zhao, “Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures,” Cem. Concr. Res., 36, 4, (2006). [Google Scholar]
  24. N. Zhang, B; Bicanic, “Fracture energy of highperformance concrete at high temperatures up to 4508C: the effects of heating temperatures and testing conditions (hot and cold),” Mag. Concr. Res., 58, 5, (2006). [Google Scholar]
  25. W. Zheng, B. Luo, Y. Wang, “Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures,” Mag. Concr. Res., 66, 8, (2014). [CrossRef] [Google Scholar]
  26. W. Khaliq, V. Kodur, “Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures,” Cem. Concr. Res., 41, 11, (2011). [CrossRef] [Google Scholar]
  27. W. Zheng, B. Luo, Y. Wang, “Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures,” Mag. Concr. Res., 66, 8, (2014). [CrossRef] [Google Scholar]
  28. A. H. Akca, N. Ö. Zihnioğlu, “High performance concrete under elevated temperatures,” Constr. Build. Mater., 44, (2013). [Google Scholar]
  29. G-F. Peng, Y-C. Jiang, B-H. Li, J. Zhang, Y-X. Shi, “Effect of high temperature on normal-strength high-performance concrete,” Mater. Res. Innov, 18, 2, (2014). [Google Scholar]
  30. "EN 14651: 2007+A1 Test method for metallic fibered concrete-Measuring the flexural tensile strength (limit of proportionality (LOP), residual), AENOR .," (2007). [Google Scholar]
  31. E. Castillo, A. Fernandez-Canteli, A unified statistical methodology for modeling fatigue damage. (Springer, 2009) ISBN: 978-1-4020-9182-7. [Google Scholar]
  32. A. Fernández-Canteli, C. Przybilla, M. Nogal, M. L. Aenlle, E. Castillo, “Profatigue: A software program for probabilistic assessment of experimental fatigue data sets,” Procedia Eng., 74, (2014). [CrossRef] [Google Scholar]
  33. A. A. Ramezanianpour, M. Esmaeili, S. A. Ghahari, M. H. Najafi, “Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers,” Constr. Build. Mater., 44, (2013). [CrossRef] [Google Scholar]
  34. A. Abrishambaf, M. Pimentel, S. Nunes, “Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites,” Cem. Concr. Res., 97, (2017). [CrossRef] [Google Scholar]
  35. E. S. Lappa, (2007) High Strength Fibre Reinforced Concrete: Static and fatigue behaviour in bending. (Thesis dissertation). [Google Scholar]
  36. A. Lau, M. Anson, “Effect of high temperatures on high performance steel fibre reinforced concrete,” Cem. Concr. Res., 36, 9, (2006). [Google Scholar]
  37. C. Alonso, L. Fernandez, “Dehydration and rehydration processes of cement paste exposed to high temperature environments,” J. Mater. Sci., 39, 9, (2004). [CrossRef] [Google Scholar]
  38. H. Cifuentes, F. García, O. Maeso, F. Medina, “Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normaland high-strength FRC,” Constr. Build. Mater., 45, (2013). [CrossRef] [Google Scholar]
  39. R. L. Norton, Machine design. A integrated approach, 5th Editi. (Pearson, 2013) ISBN-13: 978-0133356717. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.