Open Access
Issue |
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
|
|
---|---|---|
Article Number | 10016 | |
Number of page(s) | 8 | |
Section | Fatigue of Structures / Vibrations / in Service Fatigue Failures | |
DOI | https://doi.org/10.1051/matecconf/201816510016 | |
Published online | 25 May 2018 |
- C. Schneider and S. Maddox, “ Best practice guide on statistical analysis of fatigue data, ” 2003. [Google Scholar]
- M. B. A. Van Asselt, Perspectives on Uncertainty and Risk - the PRIMA Approach to Decision Support. 2000. [CrossRef] [Google Scholar]
- M. H. Faber, “ On the Treatment of Uncertainties and Probabilities in Engineering Decision Analysis, ” J. Offshore Mech. Arct. Eng., vol. 127, no. 3, p. 243, Aug. 2005. [CrossRef] [Google Scholar]
- J. Fisher, P. Albrecht, B. Yen, and D. Klingerman, “ Effects of weldments on the fatigue strength of steel beams-transverse stiffness and attachments, September 1972, ” Fritz Lab. Reports, Jan. 1972. [Google Scholar]
- R. Slockbower, “ Fatigue resistance of full scale cover-plated beams., ” Theses Diss., Jan. 1976. [Google Scholar]
- O. H. Basquin, “ The exponential law of endurance tests, ” Proc ASTM, vol. 10, pp. 625–630, 1910. [Google Scholar]
- J. Schijve, “ Statistical distribution functions and fatigue of structures, ” Int. J. Fatigue, vol. 27, no. 9, pp. 1031–1039, 2005. [CrossRef] [Google Scholar]
- F. G. Pascual and W. Q. Meeker, “ Estimating Fatigue Curves with the Random Fatigue-Limit Model, ” Technometrics, vol. 41, no. 4, pp. 277–290, 1999. [CrossRef] [Google Scholar]
- Luca D’Angelo and Alain Nussbaumer, “ Estimation of fatigue S-N curves of welded joints using advanced probabilistic approach. Under review: IJFATIGUE-D-16-00685, ” Int. J. Fatigue, vol. 97, pp. 98–113, 2017. [CrossRef] [Google Scholar]
- L. D’Angelo, M. Rocha, A. Nussbaumer, and E. Brühwiler, “ S-N-P Fatigue Curves Using Maximum Likelihood: Method for fatigue resistance curves with application to straight and welded rebars, ” Eurosteel 2014, no. 1, pp. 1–8, 2014. [Google Scholar]
- D. Leonetti, J. Maljaars, and H. H. (Bert. Snijder, “ Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference, ” Int. J. Fatigue, 2017. [Google Scholar]
- Y. Pawitan, In all likelihood : statistical modelling and inference using likelihood. Clarendon Press, 2001. [Google Scholar]
- S. S. Wilks, “ The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, ” Ann. Math. Stat., vol. 9, no. 1, pp. 60–62, 1938. [Google Scholar]
- P. Diaconis and B. Efron, “ Computer-intensive methods in statistics, ” Sci. Am., vol. 248, no. 5, pp. 116–130, 1983. [CrossRef] [Google Scholar]
- I. Babuska, Z. Sawlan, M. Scavino, B. Szabó, and R. Tempone, “ Bayesian inference and model comparison for metallic fatigue data, ” Dec. 2015. [Google Scholar]
- W. K. Hastings, “ Monte carlo sampling methods using Markov chains and their applications, ” Biometrika, vol. 57, no. 1, pp. 97–109, 1970. [Google Scholar]
- N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “ Equation of State Calculations by Fast Computing Machines, ” J. Chem. Phys., vol. 21, no. 6, pp. 1087–1092, Jun. 1953. [NASA ADS] [CrossRef] [Google Scholar]
- W. M. Bolstad, Understanding Computational Bayesian Statistics. 2012. [Google Scholar]
- G. Sedlacek, A. Hobbacher, J. B. Schleich, A. Nussbaumer, S. J. Maddox, and J. Brozzetti, “ First draft of the background document prEN 1993-1-9. ” [Google Scholar]
- JCSS, “ Background documentation Eurocode 1 (ENV 1991) - Part 1: Basis of design., ” 1996. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.