Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 10015
Number of page(s) 6
Section Fatigue of Structures / Vibrations / in Service Fatigue Failures
DOI https://doi.org/10.1051/matecconf/201816510015
Published online 25 May 2018
  1. Z. R. Zhou, A. Cardou, M. Fiset, and S. Goudreau, Wear, 173, 179–188 (1994). [CrossRef] [Google Scholar]
  2. R.B. Kalombo, J.M.G. Martínez, J.L.A. Ferreira, C.R.M. Da Silva, and J.A. Araújo, Procedia Eng., 133, 223–232 (2015). [CrossRef] [Google Scholar]
  3. C.R.F. Azevedo, A.M.D. Henriques, A.R. Pulino Filho, J.L.A. Ferreira, and J.A. Araújo, Eng. Fail. Anal., 16, 136–151 (2009). [CrossRef] [Google Scholar]
  4. R. B. Kalombo, M. S. Pestana, J. L. A. Ferreira, C. R. M. da Silva, and J. A. Araújo, Tribol. Int., 108, 141–149 (2017). [CrossRef] [Google Scholar]
  5. CIGRÉ-SCB2-WG11-TF7-06-01 (2006). [Google Scholar]
  6. D. Committee, I. Power, and E. Society, IEEE Guide for Aeolian Vibration Field Measurements of Overhead (2007). [Google Scholar]
  7. A.A. Fadel, D. Rosa, L.B. Murça, J.L.A. Fereira, and J.A. Araújo, Int. J. Fatigue, 42, 24–34 (2012). [CrossRef] [Google Scholar]
  8. Z.R. Zhou, A. Cardou, S. Goudreau, and M. Fiset, “ Fundamental investigations of electrical conductor fretting fatigue, ” Tribol. Int., vol. 29, no. 3, pp. 221–232, (1996). [CrossRef] [Google Scholar]
  9. J.C. Poffenberger and R.L. Swart, IEEE Trans. Power Appar. Syst., 84, 508–513 (1965). [CrossRef] [Google Scholar]
  10. F. Lévesque, S. Goudreau, L. Cloutier, and A. Cardou, Tribol. Int., 44, 1014–1023 (2011). [CrossRef] [Google Scholar]
  11. A.E. Giannakopoulos, T.C. Lindley, and S. Suresh, Acta Mater., 46, 2955–2968 (1998). [CrossRef] [Google Scholar]
  12. J.A. Araújo, L. Susmel, D. Taylor, J.C.T. Ferro, and E.N. Mamiya, Int. J. Fatigue, 29, 95–107 (2007). [CrossRef] [Google Scholar]
  13. J.A. Araújo, F.C. Castro, S. Pommier, J. Bellacave, and J. Mériaux, 33, 427–433 (2015). [Google Scholar]
  14. L. Susmel and D. Taylor, Fatigue Fract. Eng. Mater. Struct., 30, 567–581 (2007). [CrossRef] [Google Scholar]
  15. N.E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed. Pearson Education (2013). [Google Scholar]
  16. H. Neuber, Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material, 2nd ed. U.S. Atomic Energy Commission, Office of Tech. Inf. (1958). [Google Scholar]
  17. R. Peterson, Notch Sensitivity, McGraw Hill, 293–306 (1959). [Google Scholar]
  18. D. Taylor, Int. J. Fatigue, 21, 413–420 (1999). [CrossRef] [Google Scholar]
  19. D. Taylor, The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elseiver Science Ltda, (2007). [Google Scholar]
  20. L. Susmel, Eng. Fract. Mech., 75, 1706–1724 (2008). [CrossRef] [Google Scholar]
  21. K. Tanaka, Y. Nakai, and M. Yamashita, Int. J. Fract., 17, 519–533 (1981). [Google Scholar]
  22. E. I. Haddad, K. N. Smith, and T. H. Topper, J. Eng. Mater. Technol., 101, 42–46 (1979). [CrossRef] [Google Scholar]
  23. D. Taylor and G. Wang, Fatigue Fract. Eng. Mater. Struct., 23, 387–394 (2000). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.