Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 07003
Number of page(s) 8
Section Fatigue of Composites
Published online 25 May 2018
  1. C. Colombo, F. Libonati, F.Pezzani, A. Salerno, and L. Vergani, ‘Fatigue behaviour of a GFRP laminate by thermographic measurements’, Procedia Eng., vol. 10, pp. 3518–3527, 2011. [CrossRef] [Google Scholar]
  2. N. E. Dowling, Mechanical Behavior of Material : Engineering methods for deformation, fracture, and fatigue, International Edition. Pearson, 2013. [Google Scholar]
  3. M. P. Luong, ‘Infrared thermographic scanning of fatigue in metals’, Nucl. Eng. Des., vol. 158, no. 2–3, pp. 363–376, 1995. [CrossRef] [Google Scholar]
  4. G. La Rosa and A. Risitano, ‘Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components’, Int. J. Fatigue, vol. 22, no. 1, pp. 65–73, 2000. [CrossRef] [Google Scholar]
  5. C. Doudard, S. Calloch, F. Hild, and S. Roux, ‘Identification of heat source fields from infrared thermography: Determination of “self-heating” in a dual-phase steel by using a dog bone sample’, Mech. Mater., vol. 42, no. 1, pp. 55–62, Jan. 2010. [CrossRef] [Google Scholar]
  6. R. Munier, C. Doudard, S. Calloch, and B. Weber, ‘Identification of the micro-plasticity mechanisms at the origin of self-heating under cyclic loading with low stress amplitude’, Int. J. Fatigue, vol. 103, pp. 122–135, Oct. 2017. [CrossRef] [Google Scholar]
  7. M. Poncelet, C. Doudard, S. Calloch, F. Hild, B. Weber, and A. Galtier, ‘Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings’, Comptes Rendus Mécanique, vol. 335, no. 2, pp. 81–86, Feb. 2007. [CrossRef] [Google Scholar]
  8. L. Gornet, O. Westphal, A. Krasnobrizha, P. Rozycki, C. Peyrac, and F. Lefèbvre, ‘Rapid determination of the high cycle fatigue limit of a woven carbon fibe thermoplastic matric’, JNC 19, 2015. [Google Scholar]
  9. L. Jegou, Y. Marco, V. Le Saux, and S. Calloch, ‘Fast prediction of the Wöhler curve from heat build-up measurements on Short Fiber Reinforced Plastic’, Int. J. Fatigue, vol. 47, pp. 259–267, Feb. 2013. [CrossRef] [Google Scholar]
  10. A. Malpot, F. Touchard, and S. Bergamo, ‘Effect of relative humidity on mechanical properties of a woven thermoplastic composite for automotive application’, Polym. Test., vol. 48, pp. 160–168, 2015. [CrossRef] [Google Scholar]
  11. M. Broudin et al., ‘Water diffusivity in PA66: Experimental characterization and modeling based on free volume theory’, Eur. Polym. J., vol. 67, pp. 326–334, Jun. 2015. [CrossRef] [Google Scholar]
  12. A. Benaarbia, A. Chrysochoos, and G. Robert, ‘Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspects’, Polym. Test., vol. 40, pp. 290–298, Dec. 2014. [CrossRef] [Google Scholar]
  13. L. Greenspan, ‘Humidity Fixed Points of Binary Saturated Aqueous Solutions’, Phys. Chem., vol. 81 A, 1977. [Google Scholar]
  14. L. Muller et al., ‘Experimental monitoring of the self-heating properties of thermoplastic composite materials’, Procedia Eng., vol. 213, pp. 183–191, 2018. [CrossRef] [Google Scholar]
  15. L. Vergani, C. Colombo, and F. Libonati, ‘A review of thermographic techniques for damage investigation in composites’, Frat. Ed Integrità Strutt., 2014. [Google Scholar]
  16. W.-T. Kim, M.-Y. Choi, Y.-H. Huh, and S.-J. Eom, ‘Measurement of thermal stress and prediction of fatigue for STS using Lock-in thermography’, Proc 12th-PCNDT, 2006. [Google Scholar]
  17. A. Salerno, A. Costa, and G. Fantoni, ‘Calibration of the thermoelastic constants for quantitative thermoelastic stress analysis on composites’, Rev. Sci. Instrum., vol. 80, no. 3, p. 034904, Mar. 2009. [CrossRef] [Google Scholar]
  18. S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, ‘l1 Trend Filtering’, SIAM Rev., vol. 51, no. 2, pp. 339–360, May 2009. [CrossRef] [Google Scholar]
  19. A. Moghtaderi, P. Borgnat, and P. Flandrin, ‘Trend filtering : Empirical Mode Decompositions versus l1 and Hodrick-Prescott’, Adv. Adapt. Data Anal., vol. 03, no. 01n02, pp. 41–61, Apr. 2011. [CrossRef] [Google Scholar]
  20. I. De Baere, W. Van Paepegem, C. Hochard, and J. Degrieck, ‘On the tension–tension fatigue behaviour of a carbon reinforced thermoplastic part II: Evaluation of a dumbbellshaped specimen’, Polym. Test., vol. 30, no. 6, pp. 663–672, Sep. 2011. [CrossRef] [Google Scholar]
  21. E. Castillo and A. Fernández-Canteli, A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media, 2009. [Google Scholar]
  22. J. C. Krapez, D. Pacou, and G. Gardette, ‘Lock-in thermography and fatigue limit of metals’, Off. Natl. ETUDES Rech. Aerosp. ONERA-Publ.-TP, no. 187, 2000. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.