Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 06009
Number of page(s) 6
Section Cyclic Deformation Mechanisms and Cyclic Stress-Strain Behavior
Published online 25 May 2018
  1. B. L. Mordike and T. Ebert, “Magnesium Properties - applications - potential,” Mater. Sci. Eng. A, vol. 302, no. 1, pp. 37–45, 2001. [CrossRef] [Google Scholar]
  2. M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” Int. J. Adv. Manuf. Technol., vol. 39, no. 9–10, pp. 851–865, 2008. [CrossRef] [Google Scholar]
  3. F. Pan, M. Yang, and X. Chen, “A Review on Casting Magnesium Alloys : Modification of Commercial Alloys and Development of New Alloys,” J. Mater. Sci. Technol., vol. 32, no. 12, pp. 1211–1221, 2016. [CrossRef] [Google Scholar]
  4. H. Jahed and J. Albinmousa, “Multiaxial behaviour of wrought magnesium alloys – A review and suitability of energy-based fatigue life model,” Theor. Appl. Fract. Mech., vol. 73, pp. 97–108, 2014. [CrossRef] [Google Scholar]
  5. J. Albinmousa, H. Jahed, and S. Lambert, “Cyclic behaviour of wrought magnesium alloy under multiaxial load,” Int. J. Fatigue, vol. 33, no. 8, pp. 1127–1139, 2011. [CrossRef] [Google Scholar]
  6. A. A. Roostaei and H. Jahed, “Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling,” Mater. Sci. Eng. A, vol. 670, pp. 26–40, 2016. [CrossRef] [Google Scholar]
  7. A. A. Roostaei and H. Jahed, “Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion,” Int. J. Fatigue, vol. 97, pp. 150–161, 2017. [CrossRef] [Google Scholar]
  8. A. Hadadzadeh, M. A. Wells, S. Kumar, H. Jahed, and B. W. Williams, “Role of compression direction on recrystallization behavior and texture evolution during hot deformation of extruded ZK60 magnesium alloy,” J. Alloys Compd., vol. 702, pp. 274–289, 2017. [CrossRef] [Google Scholar]
  9. M. Madaj, M. Greger, and V. Karas, “MAGNESIUM-ALLOY DIE FORGINGS FOR AUTOMOTIVE APPLICATIONS,” Mater. Tehnol., vol. 49, no. 2, pp. 267–273, 2015. [CrossRef] [Google Scholar]
  10. G. Yu, “Forging Specimen Design for Magnesium Alloys,” (Master’s Thesis), Retrieved from Univ. Waterloo Database, 2016. [Google Scholar]
  11. S. M. H. Karparvarfard, S. K. Shaha, S. B. Behravesh, H. Jahed, and B. W. Williams, “Microstructure, texture and mechanical behavior characterization of hot forged cast ZK60 magnesium alloy,” J. Mater. Sci. Technol., 2017. [Google Scholar]
  12. S. M. H. Karparvarfard, S. K. Shaha, A. Hadadzadeh., S. B. Behravesh, H. Jahed, M. A. Wells, and B. Williams, “Characterization of Semi-Closed Die-Forged ZK60 Mg Alloy Extrusion,” Magnes. Technol. 2017, pp. 329–334, 2017. [Google Scholar]
  13. D. Toscano, S. . Shaha, S. B. Behravesh, H. Jahed, M. A. Wells, B. W. Williams, and J. McKinley, “Effect of Forging on Microstructure, Texture and Uniaxial Properties of Cast AZ31B Alloy,” J. Mater. Eng. Perform., vol. 26, no. 7, pp. 3090–3103, 2017. [CrossRef] [Google Scholar]
  14. D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, and B. Williams, “Effect of forging on the low cycle fatigue behavior of cast AZ31B alloy,” Mater. Sci. Eng. A, vol. 706, no. May, pp. 342–356, 2017. [CrossRef] [Google Scholar]
  15. D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, M. Wells, B. Williams, and J. McKinley, “Effect of Forging on Microstructure, Texture and Compression Behavior of Extruded AZ31B,” in Proceedings of the 3rd Pan American Materials Congress, Springer International Publishing, 2017, pp. 347–354. [CrossRef] [Google Scholar]
  16. A. Gryguc, H. Jahed, B. Williams, and J. Mckinley, “MagForge – Mechanical Behaviour of Forged AZ31B Extruded Magnesium in Monotonic Compression,” Mater. Sci. Forum, vol. 828–829, pp. 291–297, 2015. [CrossRef] [Google Scholar]
  17. A. Gryguc, S. K. Shaha, S. B. Behravesh, H. Jahed, M. Wells, and B. Williams, “Compression Behaviour of Semi-closed Die Forged AZ80 Extrusion,” Charact. Miner. Met. Mater. 2017, no. TMS Conference, Location: San Diego, CA, USA, Date: FEB,26-MAR,2, pp. 361–369, 2017. [Google Scholar]
  18. A. Gryguc, S. K. Shaha, S. B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su, “Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg,” Int. J. Fatigue, vol. 104, pp. 136–149, 2017. [CrossRef] [Google Scholar]
  19. A. Gryguc, S.K. Shaha, H. Jahed, M. Wells, B. Williams, J. McKinley, “Tensile and fatigue behaviour of as-forged AZ31B extrusion,” Fract. Struct. Integr., vol. 38, pp. 251–258, 2016. [Google Scholar]
  20. N. Ogawa, M. Shiomi, and K. Osakada, “Forming limit of magnesium alloy at elevated temperatures for precision forging,” Int. J. Mach. Tools Manuf., vol. 42, no. 5, pp. 607–614, 2002. [CrossRef] [Google Scholar]
  21. Y. Wu, H. Yan, S. Zhu, J. Chen, A. Liu, and X. Liu, “Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 4, pp. 930–939, 2014. [CrossRef] [Google Scholar]
  22. H. Watanabe, K. Moriwaki, T. Mukai, T. Ohsuna, K. Hiraga, and K. Higashi, “Materials Processing for Structural Stability in a ZK60 Magnesium Alloy,” Mater. Trans., vol. 44, no. 4, pp. 775–781, 2003. [CrossRef] [Google Scholar]
  23. Y. Xu-yue, J. I. Ze-sheng, H. Miura, and T. Sakai, “Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 1, pp. 55–60, 2008. [Google Scholar]
  24. F. Yang, S. M. Yin, S. X. Li, and Z. F. Zhang, “Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime,” Mater. Sci. Eng. A, vol. 491, pp. 131–136, 2008. [CrossRef] [Google Scholar]
  25. C. M. Cepeda-Jimenez, J. M. Kolina-Aldareguia, and M. T. Perez-Prado, “Effect of grain size on slip activity in pure magnesium polycrystals,” Acta Mater., vol. 84, pp. 443–456, 2015. [CrossRef] [Google Scholar]
  26. M. Tsushida, K. Shikada, H. Kitahara, S. Ando, and H. Tonda, “Relationship between Fatigue Strength and Grain Size in AZ31 Magnesium Alloys,” Mater. Trans., vol. 49, no. 5, pp. 1157–1161, 2008. [CrossRef] [Google Scholar]
  27. L. Wu, A. Jain, D. W. Brown, G. M. Stoica, S. R. Agnew, B. Clausen, D. E. Fielden, and P. K. Liaw, “Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A,” Acta Mater., vol. 56, no. 4, pp. 688–695, 2008. [CrossRef] [Google Scholar]
  28. H. Yu, Y. Xin, A. Chapuis, X. Huang, R. Xin, and Q. Liu, “The different effects of twin boundary and grain boundary on reducing tension-compression yield asymmetry of Mg alloys,” Nat. Publ. Gr., no. May, pp. 4–11, 2016. [Google Scholar]
  29. Y. J. Wu, R. Zhu, J. Tao, and W. Qing, “Role of twinning and slip in cyclic deformation of extruded Mg – 3 % Al – 1 % Zn alloys,” Scr. Mater., vol. 63, no. 11, pp. 1077–1080, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.