Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 01002
Number of page(s) 12
Section 2018 Plenary Lectures
DOI https://doi.org/10.1051/matecconf/201816501002
Published online 25 May 2018
  1. H.L. Bernstein, in: Low-cycle fatigue and life prediction, ASTM STP 770, C. Amzallag, B.N. Leis, P. Rabbe (Eds.), American Society for Testing and Materials, Philadelphia, PA, 105 (1982) [Google Scholar]
  2. F. Ellyin Fatigue damage, crack growth and life prediction (Chapman & Hall, London, 1997) [Google Scholar]
  3. R. Danzer, Lebensdauerprognose hochfester metallischer Werkstoffe im Bereich hoher Temperaturen (Gebr. Borntraeger, Berlin, 1988) [Google Scholar]
  4. H.J. Maier, R.G. Teteruk, H.-J. Christ, Materials at High Temperatures 19, 9 (2002) [CrossRef] [Google Scholar]
  5. A. Nagesha, M. Valsan, R. Kannan, K. Bhanu Sankara Rao, V. Bauer, H.-J. Christ, Intern. Journal of Fatigue 21, 636 (2009) [CrossRef] [Google Scholar]
  6. R. Zauter, F. Petry, H.-J. Christ, H. Mughrabi, in: Thermomechanical behavior of materials, ASTM STP 1186, H. Sehitoglu (Ed.), American Society for Testing and Materials, Philadelphia, PA, 70 (1993) [Google Scholar]
  7. H.-J. Christ, A. Jung, H.J. Maier, R. Teteruk, SADHANA 28, 147 (2003) [CrossRef] [Google Scholar]
  8. H.-J. Christ, R. Teteruk, A. Jung, H J. Maier, in: Thermomechanical Fatigue Behavior of Materials, 4th Volume, ASTM-STP 1428, A. McGaw, S. Kalluri, J. Bressers, S. D. Peteves (Eds.), American Society for Testing and Materials, West Conshohocken, PA, 145 (2003) [Google Scholar]
  9. H.-J. Christ, Mater. Sci. Engng A, A468-470, 98 (2007) [CrossRef] [Google Scholar]
  10. V. Bauer, H.-J. Christ, Intermetallics 17, 370 (2009) [CrossRef] [Google Scholar]
  11. V. Bauer, Verhalten metallischer Konstruktionswerkstoffe unter thermomechanischer Belastung - Experimentelle Charakterisierung und modellmäßige Beschreibung (Berichte aus der Werkstofftechnik, Shaker Verlag, Aachen, 2007) [Google Scholar]
  12. P. Pototzky, Thermomechanisches Ermüdungsverhalten der Hochtemperaturtitanlegierung IMI834 (Fortschritt-Berichte VDI, Reihe 5, Nr. 565, VDI Verlag, Düsseldorf, 1999) [Google Scholar]
  13. R. Teteruk, Modellierung der Lebensdauer bei thermomechanischer Ermüdungsbeanspruchung unter Berücksichtigung der relevanten Schädigungsmechanismen (Fortschritt-Berichte VDI, Reihe 5, Nr. 653, VDI Verlag, Düsseldorf, 2002) [Google Scholar]
  14. A. Jung, Einfluß einer Partikelverstärkung auf das Hochtemperaturermüdungsverhalten einer dispersionsgehärteten Aluminiumlegierung (Fortschritt-Berichte VDI, Reihe 5, Nr. 600, VDI Verlag, Düsseldorf, 2000) [Google Scholar]
  15. Ali El-Chaikh, Charakterisierung der Schädigungsmechanismen bei thermomechanischer Ermüdung einer hochfesten Titanaluminid-Legierung, Doctorate Thesis, to be published in 2018 [Google Scholar]
  16. H.-J. Christ, V. Bauer, in: Creep-Fatigue Interactions – Test Methods and Models, ASTM-STP 1539, A. Saxena und B. Dogan (Eds‥), ASTM International, West Conshohocken, PA, USA, 178 (2011) [Google Scholar]
  17. G. Masing, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 3, 119 (1923) [Google Scholar]
  18. H.-J. Christ, Wechselverformung von Metallen (Springer Verlag, Berlin, Germany, 1991) [CrossRef] [Google Scholar]
  19. H.-J. Christ, V. Bauer, Comput. Mater. Sci. 57, 59 (2012) [CrossRef] [Google Scholar]
  20. P. Pototzky, H.J. Maier, H.-J. Christ, Met. Mat. Trans. A 29A, 2995 (1998) [CrossRef] [Google Scholar]
  21. W.J. Ostergren, J. Test. Evaluation 4, 327 (1976) [CrossRef] [Google Scholar]
  22. W.J. Ostergren, E. Krempf, ASME Paper 78-PVP-63, ASME (1978) [Google Scholar]
  23. S. D. Antolovich, S. Liu, R. Baur, Metall. Trans A 12, 473 (1981) [CrossRef] [Google Scholar]
  24. H.-J. Christ, A. El-Chaikh, B. Wollny, in: LCF8, Eighth International Conference on Low Cycle Fatigue, T. Beck, E. Charkaluk (Eds.), DVM, Berlin, 87 (2017) [Google Scholar]
  25. H.-J. Christ, V. Bauer, in: Proc. of the Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue of Structural Materials – From Macro to Nano, K.J. Hsia, M. Göken, T. Pollock, P.D. Portella, N.R. Moody (Eds.), TMS, Warrendale, 49 (2008) [Google Scholar]
  26. V. Bauer, H.-J. Christ, in: Proc. Fifth Intern. Conf. On Low Cycle Fatigue, P.D. Portella, H. Sehitoglu, K. Hatanaka (Eds.), DVM, Berlin, 207 (2004) [Google Scholar]
  27. H. Riedel, Fracture at High Temperatures (Springer Verlag, Berlin, 1987) [CrossRef] [Google Scholar]
  28. A. Nitta, K. Kuwabara, Current Japanese Materials Research 3, 203 (1988) [Google Scholar]
  29. A. Nitta, K. Kuwabara, T. Kitamura, CRIEPI Report E282015, Central Research Institute of Electric Power Industry, Tokyo (1983) [Google Scholar]
  30. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge,1990) [CrossRef] [Google Scholar]
  31. F. Petry, H.-J. Christ, H. Mughrabi, in: Microstructure and Mechanical Properties of Materials, E. Teckhoff, O. Vöhringer (Eds.), DGM-Informationsgesellschft Verlag, Oberursel, 79 (1993) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.