Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 01001
Number of page(s) 8
Section 2018 Plenary Lectures
Published online 25 May 2018
  1. Beretta S, Foletti S, Madia M, Cavalleri E. Structural integrity assessment of turbine discs in presence of potential defects: probabilistic analysis and implementation. Fatigue Fract Eng Mater Struct 2015;38:1042–55. [CrossRef] [Google Scholar]
  2. Leverant GR, McClung RC, Millwater HR, Enright MP. A new tool for design and certification of aircraft turbine rotors. ASME Turbo Expo 2002 Power Land, Sea, Air, American Society of Mechanical Engineers; 2002, p. 699–704. [CrossRef] [Google Scholar]
  3. McClung RC, Enright MP, Millwater HR, Leverant GR, Hudak SJ. A software framework for probabilistic fatigue life assessment of gas turbine engine rotors. J ASTM Int 2004;1:1–16. [Google Scholar]
  4. Murakami Y, Miller KJ. What is fatigue damage? A view point from the observation of low cycle fatigue process. Int J Fatigue 2005;27:991–1005. [CrossRef] [Google Scholar]
  5. Beretta S, Foletti S, Rusconi E, Riva A, Socie D. A log-normal format for failure probability under LCF: Concept, validation and definition of design curve. Int J Fatigue 2016;82:2–11. [CrossRef] [Google Scholar]
  6. Cristea ME, Beretta S, Altamura A. Fatigue limit assessment on seamless tubes in presence of inhomogeneities: Small crack model vs. full scale testing experiments. Int J Fatigue 2012;41:150–7. [CrossRef] [Google Scholar]
  7. Chu TC, Ranson WF, Sutton MA. Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 1985;25:232–44. doi:10.1007/BF02325092. [CrossRef] [Google Scholar]
  8. Schreier H, Orteu JJ, Sutton MA. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. 2009. doi:10.1007/978-0-387-78747-3. [Google Scholar]
  9. Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J. Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 2012;60:1201–20 [CrossRef] [Google Scholar]
  10. J. Carroll, C. Efstathiou, J. Lambros, H. Sehitoglu, B. Hauber, S. Spottswood RC. Investigation of fatigue crack closure using multiscale image correlation experiments. Eng Fract Mech 2009;76:2384–2398. doi:10.1016/j.engfracmech.2009.08.002. [CrossRef] [Google Scholar]
  11. McNeill SR, Peters WH, Sutton MA. Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 1987;28:101–12. [CrossRef] [Google Scholar]
  12. Hos Y, Freire JLF, Vormwald M. Measurements of strain fields around crack tips under proportional and non-proportional mixed-mode fatigue loading. Int J Fatigue 2015;89:87–98. doi:10.1016/j.ijfatigue.2016.01.018. [CrossRef] [Google Scholar]
  13. Rabbolini S, Beretta S, Foletti S, Cristea ME. Crack closure effects during low cycle fatigue propagation in line pipe steel: An analysis with digital image correlation. Eng Fract Mech 2015;148:441–56. doi:10.1016/j.engfracmech.2015.07.070. [CrossRef] [Google Scholar]
  14. Vormwald M, Seeger T. The Consequences of Short Crack Closure on Fatigue Crack Growth under Variable Amplitude Loading. Fatigue Fract Eng Mater Struct 1991;14:205–25. [CrossRef] [Google Scholar]
  15. Pommier S, Bompard P. Bauschinger effect of alloys and plasticity-induced crack closure: a finite element analysis. Fatigue Fract Eng Mater Struct 2000;23:129–40. [CrossRef] [Google Scholar]
  16. Chen D, Nisitani H. Analytical and experimental study of crack closure behavior based on an Sshaped unloading curve. Mech. fatigue crack Clos., ASTM International; 1988. [Google Scholar]
  17. Romano S, Brückner-Foit A, Brandão A, Gumpinger J, Ghidini T, Beretta S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Eng Fract Mech 2017. [Google Scholar]
  18. Romano S, Patriarca L, Foletti S, Beretta S. LCF behaviour and a comprehensive life prediction model for AlSi10Mg obtained by SLM. Submitt to Int J Fatigue 2018. [Google Scholar]
  19. Newman JJC. A Crack Opening Stress Equation for Fatigue Crack Growth. Int J Fract 1984;24:R131–5. [CrossRef] [Google Scholar]
  20. Patriarca L, Beretta S, Foletti S, Monti S, Vacchieri E. Crack closure in LCF regime for a coarse-grained Ni-based superalloy tested at high temperatures. Eighth Int. Conf. Low Cycle Fatigue, Dresden: 2017. [Google Scholar]
  21. Rabbolini S, Pataky GJ, Sehitoglu H, Beretta S. Fatigue crack growth in Haynes 230 single crystals: an analysis with digital image correlation. Fatigue Fract Eng Mater Struct 2015;38:583–96. [CrossRef] [Google Scholar]
  22. Rabbolini S, Luccarelli PG, Beretta S, Foletti S, Sehitoglu H. Near-tip closure and cyclic plasticity in Ni-based single crystals. Int J Fatigue 2016;89:53–65. [CrossRef] [Google Scholar]
  23. Beretta S, Foletti S, Rabbolini S, Sehitoglu H. Fatigue Crack Propagation in Haynes 230: A Comparison between Single and Polycrystal Crack Closure Levels. Solid State Phenom., vol. 258, Trans Tech Publ; 2017, p. 243–8. [CrossRef] [Google Scholar]
  24. Wu Y, Ojha A, Patriarca L, Sehitoglu H. Fatigue crack growth fundamentals in shape memory alloys. Shape Mem Superelasticity 2015;1:18– 40. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.