Open Access
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
Article Number 06002
Number of page(s) 7
Section Intelligent Robot Design and Control
Published online 09 April 2018
  1. Smith R, Self M, Cheeseman P. Estimating uncertainspatial relationships in robotics[M]//COX I J, WILFONG G T.Autonomous Robot Vehicles. New York: Springer, 167-193 (1990) [CrossRef] [Google Scholar]
  2. Dissanayake G, Huang S, Wang Z,et al. A review of recent developments in simultaneous localization and mapping[C].6th International Conference on Industrial and Information Systems(ICIIS), Kandy, Sri Lanka,477-482 (2011) [Google Scholar]
  3. Murphy K P.Bayesian map learning in dynamic environments [C] //Proc of Neural Info Proc Systems (NIPS). Denver: MIT Press, 1015-1021 (2000) [Google Scholar]
  4. Doucet A, De Freitas N, Murphy K, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]//Proceedingsof the Sixteenth Conference on Uncertainty in Artificial Intelligence San Francisco USA,176-183 (2000) [Google Scholar]
  5. Liping Qu,Hongjian Wang. An overview of robot SLAM problem[C]// International Conference on ConsumerElectronics, Communications and Net-works (CECNet),Xian-ning,China,1953-1956 (2011) [Google Scholar]
  6. Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J], Robotics,23: 34-46 (2007) [Google Scholar]
  7. Dong J F, Wijesoma W S, Shacklock A P. An efficient rao-blackwellized genetic algorithmic filter for SLAM [C]//Proceedings of 2007 IEEE International Conference on Robotics and Automation,April10-14,2007,Roma, Italy.Piscataway:IEEEPress,2427-2432 (2007) [CrossRef] [Google Scholar]
  8. Won D, Chun S, Sung S, et al. INS/vSLAM system using distributed particle filter [J]. International Journal of Control, Automation, and Systems,1232-1240 (2010) [CrossRef] [Google Scholar]
  9. Mengyin Fu, Hao Zhu, Yi Yang, Meiling Wang, Zhihong Deng. A navigation map building algorithm using refined RBPF-SLAM. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 2483- 2487 (2016) [Google Scholar]
  10. Jin Li. Research and Application of Hybrid Frog Leap Algorithm in Small Habitats[D].Xian: Journal of Xidian University, (2012) [Google Scholar]
  11. Passino K M. Biomimicryof Bacterial Foraging for Distributed Optimization and Control [J]. Control System Magazine, 22(3):52-67 (2002) [Google Scholar]
  12. Xiaolong Liu. Improvement and Application of Bacteria Feeding Optimization Algorithm [D]. Guangzhou: South China University of Technology, (2011) [Google Scholar]
  13. Nandita S, Amitava C, Sugata M.Fuzzy VQ based imagecompression by bacterial foraging optimization algorithm with varying population. Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT),1-6 (2015) [Google Scholar]
  14. Li M S,Ji T Y,Tang WJ, et al. Bacterial Foraging Algorithmwith Varying Population[J]. BioSystems, 100(3):185-197 (2010) [Google Scholar]
  15. Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J].IEE Proceedings F Reader and Signal Processing,140(2):107-113 (1993) [Google Scholar]
  16. Feng C, Wang M, Qing-Bo J I. Analysis and comparison of resampling algorithms in particle filter [J]. Journal of System Simulation,21(4):1101-1105 (2009) [Google Scholar]
  17. Jinxai Yu, Cai Z X, Duan Z H. Survey on some key technologies of mobile robot localization based on particle filter [J]. Application Research of Computers,24(11):9-14 (2007) [Google Scholar]
  18. MerweR V D, Doucet, Freitas N D, et al. The unscented particle filter [J]. Adavances in Neural Information Processing Systems, 13:584-590 (2001) [Google Scholar]
  19. Havangi R, Taghirad H D, Nekoui M A, et al. Asquare root unscented FastSLAM with improved proposal distribution and resampling [J]. IEEE Transactions on Industrial Electonics,61(5):2334-2345 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.