Open Access
Issue
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 08008
Number of page(s) 11
Section Theoretical and applied mathematics in engineering
DOI https://doi.org/10.1051/matecconf/201815708008
Published online 14 March 2018
  1. M.N. Özişik, Heat conduction. (Wiley, New York, 1993) [Google Scholar]
  2. Y. Povstenko, Fractional heat conduction in a semi-infinite composite body. Communications in Applied and Industrial Mathematics 6 (1), e-482 (2014) [CrossRef] [Google Scholar]
  3. Y. Povstenko, Fractional heat conduction in an infinite medium with a spherical inclusion. Entropy 15, 4122-4133 (2013) [CrossRef] [Google Scholar]
  4. Y. Povstenko, J. Klekot, The fundamental solutions to the central symmetric time-fractional heat conduction equation with heat absorption. Journal of Applied Mathematics and Computational Mechanics 16 (2), 101-112 (2017) [CrossRef] [Google Scholar]
  5. S. Blasiak, Time-fractional heat transfer equations in modeling of the non-contacting face seals. International Journal of Heat and Mass Transfer 100, 79-88 (2016) [CrossRef] [Google Scholar]
  6. T.H. Ning, X.Y. Jiang, Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta Mechanica Sinica 27 (6), 994-1000 (2011) [CrossRef] [Google Scholar]
  7. S. Kukla, U. Siedlecka, Laplace transform solution of the problem of time-fractional heat conduction in a two-layered slab. Journal of Applied Mathematics and Computational Mechanics 14 (4), 105-113 (2015) [CrossRef] [Google Scholar]
  8. S. Kukla, U. Siedlecka, An analytical solution to the problem of time-fractional heat conduction in a composite sphere. Bulletin of the Polish Academy of Sciences – Technical Sciences 65 (2), 179-186 (2017) [Google Scholar]
  9. U. Siedlecka, Radial heat conduction in a multilayered sphere. Journal of Applied Mathematics and Computational Mechanics 13 (4), 109-116 (2014) [CrossRef] [Google Scholar]
  10. T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics. (John Wiley & Sons, New York, 2014) [Google Scholar]
  11. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations. (Elsevier, Amsterdam, 2006) [Google Scholar]
  12. J.S. Leszczyński, An Introduction to Fractional Mechanics. The Publishing Office of Czestochowa University of Technology, Czestochowa (2011) [Google Scholar]
  13. M. Dalir, M. Bashour, Applications of fractional calculus. Applied Mathematical Sciences 4 (21), 1021-1032 (2010) [Google Scholar]
  14. A. Dzieliński, D. Sierociuk, G. Sarwas, Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences – Technical Sciences 58 (4), 583-592 (2010) [Google Scholar]
  15. W. E. Raslan, Application of fractional order theory of thermoelasticity to a ID problem for a spherical shell. Journal of Theoretical and Applied Mechanics 54 (1), 295-304 (2016) [CrossRef] [Google Scholar]
  16. Y. Povstenko, Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition. Fractional Calculus & Applied Analysis 16 (2), 354-369 (2013) [CrossRef] [Google Scholar]
  17. K. L. Kuhlman, Review of inverse Laplace transform algorithms for Laplace-space numerical approaches. Numerical Algorithms 63 (2), 339-355 (2013) [CrossRef] [Google Scholar]
  18. J. Abate, P. P. Valkó, Multi-precision Laplace transform inversion. International Journal for Numerical Methods in Engineering 60, 979-993 (2004) [CrossRef] [Google Scholar]
  19. B. Dingfelder, J. A. C. Weideman, An improved Talbot method for numerical Laplace transform inversion. Numerical Algorithms 68, 167-183 (2015) [CrossRef] [Google Scholar]
  20. H. Sheng, Y. Li, Y. Chen, Application of numerical inverse Laplace transform algorithms in fractional calculus. Journal of the Franklin Institute 384, 315-330 (2011) [CrossRef] [Google Scholar]
  21. I. Podlubny, Fractional differential equations. (Academic Press, San Diego, 1999) [Google Scholar]
  22. K. Diethelm, The analysis of fractional differential equations. (Springer-Verlag Berlin Heidelberg, 2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.