Open Access
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
Article Number 04005
Number of page(s) 7
Section Life Sciences
Published online 28 February 2018
  1. I. B. McInnes, G. Schett, The Pathogenesis of Rheumatoid Arthritis, N Engl J Med, 365, 2205-2219, (2011). [CrossRef] [Google Scholar]
  2. G. S. Firestein, Evolving concepts of rheumatoid arthritis, Nature, 423, 356-361, (2003). [Google Scholar]
  3. S. Ryan, Continuing professional development, autoimmune disease, Royal College of Nursing, 16, (2002). [Google Scholar]
  4. UK AR, Condition Rheumatoid Arthritis United Kingdom, Arthritis Research UK, (2014). [Google Scholar]
  5. A. Gibofsky, Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis, Am J Manag Care, 18, 295-302, (2012). [Google Scholar]
  6. A. Gibofsky, R. J. Winchester, M. Patarroyo, M. Fotino, H. G. Kunkel. Disease associations of the Ia-like human alloantigens: contrasting patterns in rheumatoid arthritis and systemic lupus erythematosus, J Exp Med, 148, 1728-1732, (1978). [CrossRef] [Google Scholar]
  7. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, H. Car, Nanoparticles as drug delivery systems, Pharmacol Rep, 64, 1020-1037, (2012). [Google Scholar]
  8. D. S. Majka, K. D. Deane, L. A. Parrish, A. A. Lazar, A. E. Baron, C. W. Walker, M. V. Rubertone, W. R. Gilliland, J. M. Norris, V. M. Holers, The duration of preclinical rheumatoid arthritis-relatedautoantibody positivity increases in subjects with older age at time of disease diagnosis, Ann Rheum Dis, 67, 801–807, (2008). [CrossRef] [Google Scholar]
  9. J. S. Smolen, G. Steiner, Therapeutic strategies for rheumatoid arthritis, Nat Rev Drug Discov, 2, 473-488, (2003). [CrossRef] [Google Scholar]
  10. J. S. Smolen, D. Aletaha, M. Koeller, M. H. Weisman, P. Emery, New therapies for treatment of rheumatoid arthritis. Lancet, 370, 1861-1874, (2007). [Google Scholar]
  11. M. T. Getts, S. D. Miller, 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: triggering of autoimmune diseases by infections, Clin Exp Immunol, 160, 15-21, (2010). [CrossRef] [Google Scholar]
  12. E. W. Karlson, K. Deane, Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am, 38, 405-426, (2012). [CrossRef] [Google Scholar]
  13. K. H. Costenbader, D. Feskanich, L. A. Mandl, E. W. Karlson, Smoking intensity, duration, and cessation, and the risk of rheumatoid arthritis in women, Am J Med, 119, 503–511, (2006). [CrossRef] [Google Scholar]
  14. L. Klareskog, P. Stolt, K. Lundberg, H. Källberg, C. Bengtsson, J. Grunewald, J. Rönnelid, H. E. Harris, A. K. Ulfgren, S. Rantapää-Dahlqvist, A. Eklund, L. Padyukov, L. Alfredsson, A new model for an etiology of rheumatoid arthritis: Smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination, Arthritis Rheum, 54, 38-46, (2006). [CrossRef] [Google Scholar]
  15. D. P. Symmons, E. M. Barrett, C. R. Bankhead, D. G. Scott, A. J. Silman, The incidence of rheumatoid arthritis in the United Kingdom: results from the Norfolk Arthritis Register, Br J Rheumatol, 33, 735-739, (1994). [CrossRef] [Google Scholar]
  16. E. W. Karlson, L. A. Mandl, S. E. Hankinson, F. Grodstein, Do breast-feeding and other reproductive factors influence future risk of rheumatoid arthritis? Results from the Nurses’ Health Study, Arthritis Rheum, 50, 3458–3467, (2004). [CrossRef] [Google Scholar]
  17. K. Lundberg, N. Wegner, T. Yucel-Lindberg, P. J. Venables, Periodontitis in RA-the citrullinated enolase connection, Nature Reviews Rheumatology, 6, 727–730, (2010). [Google Scholar]
  18. N. Wegner, R. Wait, A. Sroka, S. Eick, K. A. Nguyen, K. Lundberg, A. Kinloch, S. Culshaw, J. Potempa, P. J. Venables, Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis, Arthritis Rheum, 62, 2662–2672, (2010). [CrossRef] [PubMed] [Google Scholar]
  19. Y. Arnson, H. Amital, Y. Shoenfeld, Vitamin D and autoimmunity: new aetiological and therapeutic considerations, Ann Rheum Dis, 66, 1137–1142, (2007). [CrossRef] [PubMed] [Google Scholar]
  20. M. T. Cantorna, C. E. Hayes, H. F. DeLuca, 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis, J Nutr, 128, 68–72, (1998). [CrossRef] [Google Scholar]
  21. D.J. Pattison, D.P. Symmons, M. Lunt, A. Welch, R. Luben, S.A. Bingham, K.T. Khaw, N.E. Day, A.J. Silman, Dietary risk factors for the development of inflammatory polyarthritis: evidence for a role of high level of red meat consumption, Arthritis Rheum, 50, 3804-3812, (2004). [Google Scholar]
  22. J.M. Davis, E.L. Matteson, My treatment approach to rheumatoid arthritis, Mayo Clin Proc, 87, 659-673, (2012). [CrossRef] [Google Scholar]
  23. L.F. Callahan, D.S. Cordray, G. Wells, T. Pincus, Formal education and five-year mortality in rheumatoid arthritis: mediation by helplessness scale score, Arthritis Care Res, 9, 463-472, (1996). [Google Scholar]
  24. SIGN (Scottish Intercollegiate Guidelines Network), Management of early rheumatoid arthritis, Edinburgh, (2011). (SIGN publication no. 123). [cited February 2011]. Available from URL: [Google Scholar]
  25. R. Awaluddin, W.K. Muhtadi, L. Chabib, Z. Ikawati, R. Martien, H. Ismail, Molecular docking and ADME-toxicity studies of potential compounds of medicinal plants grown in Indonesia as an anti-rheumatoid arthritis, AIP Conf Proc, 1823, 020033, 1-9, (2017). [Google Scholar]
  26. M. Joshi, Advances in the management of rheumatoid arthritis, J Mahatma Gandhi Inst Med Sci, 17, 1-7, (2012). [Google Scholar]
  27. L. Chabib, Z. Ikawati, R. Martien, H. Ismail, Review of rheumatoid arthritis: the pharmacological therapy, the potential of curcumin and its analogues, and the development of nanoparticle system, Jurnal Pharmascience, 3, 10-18, (2016). [Google Scholar]
  28. R.B. Gupta, U.B. Kompella, Nanoparticle technology of drug delivery, Taylor & Francis Grup, New York, 4-6, 13-16, (2006). [Google Scholar]
  29. E. Alleman, R. Gurny, E. Doelker, Drug-loaded nanoparticles-preparation methods and drug targeting issues, Eur. J. Pharm. Biopharm., 39, 173-191, (1993). [Google Scholar]
  30. W. Tiyaboonchai, Chitosan nanoparticles: A promising system for drug delivery, Naresuan Univ. J., 11, 51-66, (2003). [Google Scholar]
  31. P. Li, Y. Dai, J. Zhang, A. Wang, Q. Wei, Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine, Int J Biomed Sci, 4, 221-228, (2008). [Google Scholar]
  32. A. Grenha, M.E. Gomes, M. Rodrigues, V.E. Santo, J.F. Mano, N.M. Neves, R.L. Reis RL, Development of new chitosan/carrageenan nanoparticles for drug delivery application, J Biomed Mater Res, 92, 1265-1272, (2009). [Google Scholar]
  33. T. Gazori, M.R. Khoshayand, E. Azizi, P. Yazdizade, A. Nomani, I. Haririan, Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization, Carb. Pol., 77, 599-606, (2009). [CrossRef] [Google Scholar]
  34. C. Buzea, L. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2, 17-71, (2007). [Google Scholar]
  35. Y. Kawashima, H. Yamamoto, H. Takeuchi, Y. Kuno, Mucoadhesive DL-lactide/glycolide copolymer nanoparticles coated with chitosan to improve oral delivery of elcatonin, Pharm Dev Technol, 5, 77-85, (2000). [CrossRef] [Google Scholar]
  36. A.C. Anselmo, S. Mitragotri, Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles, J Control Release, 190, 531-541, (2014). [CrossRef] [Google Scholar]
  37. R. Stevenson, A.J. Hueber, A. Hutton, I.B. McInnes, D. Graham, Nanoparticles and inflammation, Sci World J, 11, 1300-1312, (2011) [CrossRef] [Google Scholar]
  38. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified gold nanorods with stealth character for in vivo application, J Control Release, 114, 343-347, (2006) [CrossRef] [Google Scholar]
  39. L. Chabib, W.K. Muhtadi, Z. Ikawati, R. Martien, H. Ismail, Stability study of gamavuton (GVT-0) self-nanoemulsifying drug delivery system (SNEDDS) with myritol as the oil phase, International Journal of Current Innovation Research, 3, 590-594. (2017). [Google Scholar]
  40. M. Yazdanian, K. Briggs, C. Jankovsky, A. Hawi, The "high solubility" definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs, Pharm Res, 21, 293-299, (2004). [CrossRef] [Google Scholar]
  41. A. Bhatia, P. Shard, D. Chopra, T. Mishra, Chitosan nanoparticles as carrier of immunorestoratory plant extract: synthesis, characterization and immunorestoratory efficacy, International Journal of Drug Delivery, 3,381-385, (2011). [Google Scholar]
  42. R. Martien, B. Loretz, A. Bernkop-Schnűrch, Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack, Biopolymers, 83, 327-336, (2006). [CrossRef] [Google Scholar]
  43. R. Ravichandran, Nanoparticles in drug delivery: Potential green nanobiomedicine applications, Int J Green Nanotech Biomed, 1, 108-130, (2009). [Google Scholar]
  44. F. Li, J. Li, X. Wen, S. Zhou, X. Tong, P. Su, H. Li, D. Shi, Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An in vitro study, Mater Sci Eng C, 29, 2392-2397, (2009). [CrossRef] [Google Scholar]
  45. W. F. Tonnis, G. F. Kersten, H. W. Frijlink, W. L. J. Hinrichs, A. H. de Boer, J. P. Amorij, Pulmonary vaccine delivery: a realistic approach?, J Aerosol Med Pulm Drug Deliv, 25, 249-260, (2012). [CrossRef] [Google Scholar]
  46. P. Muttil, C. Prego, L. Garcia-Contreras, B. Pulliam, J. K. Fallon, C. Wang, A. J. Hickey, D. Edwards, Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route, AAPS J, 12, 330–337, (2010). [CrossRef] [Google Scholar]
  47. K. Poelstra, J. Prakash, L. Beljaars, Drug targeting to the diseased liver, J Control Release, 161, 188-197, (2012). [CrossRef] [Google Scholar]
  48. R. A. Bader, The Development of Targeted Drug Delivery Systems for Rheumatoid Arthritis Treatment, Rheumatoid Arthritis - Treatment, Dr. Andrew Lemmey (Ed.), ISBN: 978-953-307-850-2, InTech, (2012). [Google Scholar]
  49. M. Higaki, T. Ishihara, N. Izumo, M. Takatsu, Y. Mizushima, Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate, Ann Rheum Dis, 64, 1132-1136, (2005). [CrossRef] [Google Scholar]
  50. T. Ishihara, T. Kubota, T. Choi, M. Higaki, Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate, J Pharm Exp Ther, 329, 412–417, (2009). [CrossRef] [Google Scholar]
  51. D. Chandrasekar, R. Sistla, F. J. Ahmad, R. K. Khar, P. V. Diwan, The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats, Biomaterials, 28, 504-512, (2007). [CrossRef] [Google Scholar]
  52. D. Chandrasekar, R. Sistla, F. J. Ahmad, R. K. Khar, P. V. Diwan, Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery, J Biomed Mater Res A, 82, 92-103, (2007). [CrossRef] [Google Scholar]
  53. A. S. Chauhan, N. K. Jain, P. V. Diwan, A. J. Khopade, Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats, J Drug Target, 12, 575-583, (2004) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.