Open Access
Issue
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
Article Number 01035
Number of page(s) 4
Section Engineering and Technology
DOI https://doi.org/10.1051/matecconf/201815401035
Published online 28 February 2018
  1. E. Akponah, O. O. Akpomie, and M. Ubogu, “Bio-ethanol Production from Cassava Effluent using Zymomonas mobilis and Saccharomyces cerevisiae Isolated from Rafia Palm (Elaesis guineesi) SAP,” Eur. J. Exp. Biol., 3, 247–253 (2013). [Google Scholar]
  2. E. C. Bensah and M. Mensah, “Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations,” Int. J. Chem. Eng., 2013, 1–21 (2013). [CrossRef] [Google Scholar]
  3. P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Bioresource Technology Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis : A review,” Bioresour. Technol., 101, 4851–4861 (2010). [CrossRef] [Google Scholar]
  4. R. M. Trevorah and M. Z. Othman, “Alkali Pretreatment and Enzymatic Hydrolysis of Australian Timber Mill Sawdust for Biofuel Production,” J. Renew. Energy, 2015, 1–9 (2015). [CrossRef] [Google Scholar]
  5. S. H. Mood et al., “Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment,” Renew. Sustain. Energy Revoews, 27, 77–93 (2013). [CrossRef] [Google Scholar]
  6. E. L. Souza, G. F. Liebl, C. Marangoni, N. Sellin, M. S. Montagnoli, and O. Souza, “Bioethanol from Fresh and Dried Banana Plant Pseudostem,” Chem. Eng. Trans., 38, 271–276 (2014). [Google Scholar]
  7. L. Peng and Y. Chen, “Conversion of Paper Sludge to Ethanol by Separate Hydrolysis and Fermentation (SHF) using Saccharomyces cerevisiae,” Biomass and Bioenergy, 35, 1600–1606 (2011). [CrossRef] [Google Scholar]
  8. F. A. Gonçalves, H. A. Ruiz, E. S. dos Santos, J. A. Teixeira, and G. R. de Macedo, “Bioethanol Production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from Delignified Coconut Fibre Mature and Lignin Extraction According to Biorefinery Concept,” Renew. Energy, 94, 353–365 (2016). [CrossRef] [Google Scholar]
  9. M. Bunzel, A. Schüßler, and G. T. Saha, “Chemical characterization of Klason lignin preparations from plant-based foods,” J. Agric. Food Chem., 59, 12506–12513 (2011). [CrossRef] [Google Scholar]
  10. R. Datta, “Acidogenic fermentation of lignocellulose-acid yield and conversion of components,” Biotechnol. Bioeng., 23, 2167–2170 (1981). [CrossRef] [Google Scholar]
  11. K. Eisenhuber, K. Krennhuber, V. Steinmüller, and A. Jäger, “Comparison of Different Pre-Treatment Methods for Separating Hemicellulose from Straw during Lignocellulose Bioethanol Production,” Energy Procedia, 40, 172–181 (2013). [CrossRef] [Google Scholar]
  12. M. Idrees, A. Adnan, F. Malik, and F. A. Qureshi, “Enzymatic Saccharification and Lactic Acid Production from Banana Pseudo-Stem Through Optimized Pretreatment at Lowest Catalyst Concentration,” EXCLI J., 12, 269–281 (2013). [Google Scholar]
  13. N. I. Iberahim, J. M. Jahim, S. Harun, M. T. M. Nor, and O. Hassan, “Sodium Hydroxide Pretreatment and Enzymatic Hydrolysis of Oil Palm Mesocarp Fiber,” Int. J. Chem. Eng. Appl., 4, 101–105 (2013). [Google Scholar]
  14. D. Dahnum, S. O. Tasum, E. Triwahyuni, M. Nurdin, and H. Abimanyu, “Comparison of SHF and SSF Processes using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch,” Energy Procedia, 68, 107–116 (2015). [CrossRef] [Google Scholar]
  15. S. Thakur, B. Shrivastava, S. Ingale, R. C. Kuhad, and A. Gupte, “Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment,” 3 Biotech, 3, 365–372 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.