Open Access
MATEC Web Conf.
Volume 251, 2018
VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018)
Article Number 06011
Number of page(s) 7
Section Risk Management in Construction
Published online 14 December 2018
  1. RTNB Burundi, “Les contreforts des Mirwa nécessitent une protection particulière RTNB Burundi,” 19/03/2018, 2018. [Online]. Available: [Accessed: 04-Jun-2018]. [Google Scholar]
  2. UNOSAT/UNOSAT, “Landslide in Rutunga, Bujumbura Rural Province, Burundi (as of 17 Apr 2015) - Burundi | ReliefWeb,” 2015. [Online]. Available: [Accessed: 02-Mar-2018]. [Google Scholar]
  3. L. Nibigira, S. Draidia, and H.-B. Havenith, “GIS-Based Landslide Susceptibility Mapping in the Great Lakes Region of Africa, Case Study of Bujumbura Burundi,” in Engineering Geology for Society and Territory Volume 2, Cham: Springer International Publishing, 2015, pp. 985–988. [CrossRef] [Google Scholar]
  4. D. Kubwimana, L. Ait Brahim, M. Bousta, O. Dewitte, A. Abdelouafi, and T. Bahaj, “Landslides susceptibility assessment using AHP method in Kanyosha watershed ( Bujumbura-Burundi ): Urbanisation and management impacts,” MATEC Web Conf., Vol. 149, p. 02071, 2018. [CrossRef] [Google Scholar]
  5. L. Montrasio and R. Valentino, “A model for triggering mechanisms of shallow landslides,” Nat. Hazards Earth Syst. Sci., Vol. 8, No. 5, pp. 1149–1159, 2008. [CrossRef] [Google Scholar]
  6. R. L. Baum, W. Z. Savage, and J. W. Godt, “TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0.” Denver Publishing Service Center, Denver, p. 75, 2008. [Google Scholar]
  7. R. T. Pack, D. G. Tarboton, and C. N. Goodwin, “SINMAP A stability index approach to terrain stability hazard mapping,” Manuel, pp. 1–75, 2003. [Google Scholar]
  8. M. Anderson, D. Lloyd, and M. Kemp, “Hydrological design manual for slope stability in the Tropics,” Overseas Road Note14, 1997. [Google Scholar]
  9. D. R. Montgomery and W. E. Dietrich, “A physically based model for the topographic control on shallow landsliding,” Water Resour. Res., Vol. 30, No. 4, pp. 1153–1171, Apr. 1994. [Google Scholar]
  10. Z. Wu et al., “A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models,” Arab. J. Geosci., Vol. 10, No. 8, 2017. [Google Scholar]
  11. D. Tien Bui, Q. P. Nguyen, N. D. Hoang, and H. Klempe, “A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS,” Landslides, pp. 1–17, 21-Apr-2016. [Google Scholar]
  12. H. Bourenane, M. S. Guettouche, Bouhadad, and Braham, “Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods,” Arab. J. Geosci., Vol. 9, No. 2, pp. 1–24, Feb. 2016. [CrossRef] [Google Scholar]
  13. D. Tien Bui, T. A. Tuan, H. Klempe, B. Pradhan, and I. Revhaug, “Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree,” Landslides, Vol. 13, no. January, pp. 361–378, Apr. 2015. [CrossRef] [Google Scholar]
  14. C. Conoscenti, M. Ciaccio, N. A. Caraballo-Arias, Á. Gómez-Gutiérrez, E. Rotigliano, and V. Agnesi, “Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy),” Geomorphology, Vol. 242, pp. 49–64, Aug. 2015. [CrossRef] [Google Scholar]
  15. Direction Générale de l’Environnement, “Communication nationale sur les changements climatiques” 2005. [Google Scholar]
  16. D. J. Varnes, “Slope Movement Types and Processes,” Transp. Res. Board Spec. Rep., No. 176, pp. 11–33, 1978. [Google Scholar]
  17. N. Lu and J. Godt, “Infinite slope stability under steady unsaturated seepage conditions,” Water Resour. Res., Vol. 44, No. 11, p. n/a-n/a, Nov. 2008. [Google Scholar]
  18. G. M. Saulnier, K. Beven, and C. Obled, “Including spatially variable effective soil depths in TOPMODEL,” J. Hydrol., Vol. 202, No. 1–4, pp. 158–172, 1997. [CrossRef] [Google Scholar]
  19. T. L. Tsai, P. Y. Tsai, and P. J. Yang, “Probabilistic modeling of rainfall-induced shallow landslide using a point-estimate method,” Environ. Earth Sci., Vol. 73, No. 8, pp. 4109–4117, 2015. [CrossRef] [Google Scholar]
  20. E. Arnone, Y. G. Dialynas, L. V. Noto, and R. L. Bras, “Parameter Uncertainty in Shallow Rainfall-triggered Landslide Modeling at Basin Scale: A Probabilistic Approach,” Procedia Earth Planet. Sci., Vol. 9, pp. 101–111, 2014. [CrossRef] [Google Scholar]
  21. W. C. Haneberg, “A Rational Probabilistic Method for Spatially Distributed Landslide Hazard Assessment,” Environ. Eng. Geosci., Vol. 10, No. 1, pp. 27–43, 2004. [CrossRef] [Google Scholar]
  22. G. Zhou, T. Esaki, Y. Mitani, M. Xie, and J. Mori, “Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach,” Eng. Geol., Vol. 68, No. 3–4, pp. 373–386, 2003. [CrossRef] [Google Scholar]
  23. C. J. Van Westen, “Slope instability Recognition, analysis and zonation,” no. December, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.