Open Access
Issue
MATEC Web Conf.
Volume 251, 2018
VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018)
Article Number 01034
Number of page(s) 8
Section Building Materials
DOI https://doi.org/10.1051/matecconf/201825101034
Published online 14 December 2018
  1. M-LE. Florian Scope and history of archaeological wood. In: Rowell R.M., Barbour R.J. (eds.) Archaeological wood: properties, chemistry, and preservation / Advances in chemistry series, American Chemical society. Washington DC. pP. 3–32. URL: http://www.worldcat.org/title/archaeological-wood-properties-chemistry-and-preservation/oclc/454236315 (1990) [Google Scholar]
  2. M. Matsuo, M. Yokoyama, K. Umemura Aging of wood: Analysis of color change during natural aging and heat treatment, Holzforchung, 65. pP. 361–368. URL:https://www.researchgate.net/publication/267803583_Aging_of_wood_Analysis_of_color_changes_during_natural_aging_and_heat_treatment (2011) [CrossRef] [Google Scholar]
  3. H. Yorur, S. Kurt, H.I. Yumrutas The effect of aging on various physical and mechanical properties of scotch pine wood used in construction of historical safranbolu houses, Drvna Industrija, 3, pP. 191–196. (2014) [CrossRef] [Google Scholar]
  4. Bjordal C. G. Microbial degradation of waterlogged archeological wood, Journal of cultural Heritage, 13, pP. 118–122, (2012) [CrossRef] [Google Scholar]
  5. N.B. Pedersen, C.G. Bjordal, P. Jensen, C. Felby Bacterial degradation of archaeological wood in anoxic waterlogged environment, Harding S.E. (ed.) Stability of complex carbohydrate structures: Biofuels, foods, vaccines and shipwrecks. pP. 160–187. URL: http://pubs.rsc.org/en/content/chapter/bk9781849735636-00160/978-1-84973-563-6 (2013) [Google Scholar]
  6. E.N. Pokrovskaya, Yu.L. Kovalchuk Biocorrosion, preservation of historical and cultural monuments, 212 p. URL: https://www.twirpx.com/file/1765425/ (2013) [Google Scholar]
  7. E.N. Pokrovskaya Preservation of monuments of wooden architecture with the help of organoelement compounds. Chemical and physical basis for increasing the longevity of wood. 136 p. URL: https://search.rsl.ru/ru/record/02000011031 (2009) [Google Scholar]
  8. E.L. Knut, L. Marstein Conservation of historic timber structures: An ecological approach, 140 p. URL: http://openarchive.icomos.org/1656/ (2016) [Google Scholar]
  9. A.Kh. Kuptsov, G.N. Zhizhin Fourier-Raman spectra and Fourier-IR spectra of polymers, 696 p. URL: https://www.twirpx.com/file/375141/ (2013) [Google Scholar]
  10. N. Belgacem Recent advances on surface chemical modification on polysaccharides: from basic consideration to concrete applications, Proceedings of International conference «Renewable resources: chemistry, technology, medicine» P. 25. URL: http://www.onlinereg.ru/rr2017/FINAL.pdf (2017) [Google Scholar]
  11. E.N. Pokrovskaya, Yu.L. Kovalchuk Chemical-Mycological Method of Investigation of Wood, Modern Problems of Biological and Technical Wood Science. Collection of proceedings of the First International Scientific and Practical Conference. pP. 16–19. URL: https://search.rsl.ru/ru/record/01008642113 (2016) [Google Scholar]
  12. E.N. Pokrovskaya, A.A. Kobelev Composition and properties of the layer of the carbonaceous layer formed in the combustion of wood modified by phosphorus and silicone compounds, Proceedings of the Moscow State University of Civil Engineering, 3, pP. 128–133. URL: https://cyberleninka.ru/article/n/sostav-i-svoystva-uglistogo-sloya-obrazuyuschegosya-pri-gorenii-drevesiny-modifitsirovannoy-fosfor-i-kremniyorganicheskimi (2008) [Google Scholar]
  13. R.M. Aseeva, B.B. Serkov, A.B. Sivenkov Combustion of wood and its fire hazard properties, 262 p. URL: https://cyberleninka.ru/article/n/gorenie-i-pozharnaya-opasnost-drevesiny (2010) [Google Scholar]
  14. E.A. Anokhin, E.Yu. Polischuk, A.V. Savinkov Fire danger of enclosing wooden structures with a long service life, Fire and explosion safety, 10, pP. 30–40. URL: https://cyberleninka.ru/article/n/pozharnaya-opasnost-ograzhdayuschih-derevyannyh-konstruktsiy-s-dlitelnym-srokom-ekspluatatsii (2016) [Google Scholar]
  15. E.N. Pokrovskaya Obtaining biostable materials for surface modification of wood, Proceedings of the Moscow State University of Civil Engineering, 7. pP. 636–640. URL: https://cyberleninka.ru/article/n/poluchenie-biostoykih-materialov-pri-poverhnostnoy-modifikatsii-drevesiny-1 (2011) [Google Scholar]
  16. E.N. Pokrovskaya, I.N. Chistov, R.A. Sheptalin Sandwich coatings on wood using nanocomposites, Building Materials, 7, pP. 78–81. URL: https://cyberleninka.ru/article/n/issledovanie-s-pomoschyu-ik-furie-spektroskopii-reaktsiy-vzaimodeystviya-kompozitsiy-na-osnove-fosfororganicheskih-soedineniy-i (2010) [Google Scholar]
  17. S.V. Afanasyev, V.M. Balakin Theory and practice of fire protection of wood and wood products, 138 p. URL: https://search.rsl.ru/ru/record/01008112928 (2012) [Google Scholar]
  18. B.M. Tarasevich IR spectra of the main classes of organic compounds, 54 p. URL: https://www.freedocs.xyz/pdf-439081528 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.