Open Access
Issue
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 01009
Number of page(s) 11
Section Geotechnical Engineering
DOI https://doi.org/10.1051/matecconf/201825001009
Published online 11 December 2018
  1. I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill, 476 (1956). [Google Scholar]
  2. F. V. Cauweleart, and B. Eckmann, Indirect tensile test applied to anisotropic materials, Materials and structures, 27, 54 (1994). [CrossRef] [Google Scholar]
  3. J. Claesson, and B. Bohloli, Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution, Int. J. of Rock Mech. and Mining Sci., 39, 991 (2002). [CrossRef] [Google Scholar]
  4. G. E. Exadaktylos, On the constraints and relations of elastic constants of transversely isotropic geomaterials, Int. J. of Rock Mech. and Mining Sci., 38, 941 (2001). [CrossRef] [Google Scholar]
  5. G. E. Exadaktylos, and K.N. Kaklis, Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically, Int. J. of Rock Mech. and Mining Sci., 38, 227 (2001) . [CrossRef] [Google Scholar]
  6. C. S. Chen, , E. Pan and B. Amadei, Determination of Deformability and Tensile Strength of Anisotropic Rock Using Brazilian Tests, Int. J. of Rock Mech. and Mining Sci., 35, 43 (1998). [CrossRef] [Google Scholar]
  7. Ch. F. Markides, D. N. Pazis, and S. K. Kourkoulis, Closed full-fill solutions for stress and displacements in the Brazilian disk under distributed radial load, Int. J. of Rock Mech. and Mining Sci., 47, 227 (2010). [CrossRef] [Google Scholar]
  8. R. K. Lemmon and D. M. Blackketter, Stress Analysis of an Orthotropic Material under Diametral Compression, Experimental Mech. 36, 204 (1996). [CrossRef] [Google Scholar]
  9. T. Tsutsumi, and K. Hirashima, Analysis of Orthotropic Circular Disks and Rings under Diametrical Loading, Structural Eng. and Mech., 9(1), 37 (2000). [CrossRef] [Google Scholar]
  10. T. Tsutsumi, and S. Kukino, Distribution of Tensile Stress under Modified Boundary Condition in Theoretical Solution for Diametrical Compression Test, Proc. 13th ISRM Congress, CD-ROM (2015). [Google Scholar]
  11. S. Kukino, and T. Tsutsumi, Modification of boundary condition in theoretical model for diametrical compression test, Proc. 4th International Symposium on Technology for Sustainability, CD-ROM (2014). [Google Scholar]
  12. T. Tsutsumi, R. A. Abdullah, and M. F. M Amin, Theoretical model using two kinds of function for distribution of applied load in Brazilian Test, Proc. 9th Asian Rock Mechanics Symposium, USB-Flash memory (2016). [Google Scholar]
  13. S. G. Lekhnitskii, Anisotropic Plate, 141, Gordon & Breach (1968). [Google Scholar]
  14. S. Kawakubo, T. Tsutsumi, and K. Hirashima, Stress and Displacement Fields for an Anisotropic Elliptical Disk Subjected to Arbitrary Loads at Boundary (in Japanese), Trans. JSME Series A, 62, 1626 (1996). [CrossRef] [Google Scholar]
  15. Y. Aono, K. Tani, T. Okada, and M. Sakai, The mechanism of failure near the loading point in the splitting tensile strength test on Tage Stone (in Japanese), Proc. of 41th Rock Mech. Symposium in Japan, 157 (2012). [Google Scholar]
  16. Lavrov, A. and Vervoort, A., Theoretical treatment of tangential loading effects on the Brazilian test stress distribution, Int. J. of Rock Mech. and Mining Sci., 39, 275 (2002). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.