Open Access
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 01001
Number of page(s) 12
Section Geotechnical Engineering
Published online 11 December 2018
  1. C. Kumar, Groundwater modelling software—capabilities and limitations, J Environ Sci Toxicol Food Technol, vol. 1, no. 2, pp. 46-57 (2012). [Google Scholar]
  2. C. Kumar, Groundwater flow models, Scientist ‘E1’National Institute of Hydrology Roorkee–247667 (Uttaranchal) publication (2002). [Google Scholar]
  3. R. P. Kumar, G. Dodagoudar, S. Quadri, Contaminant Transport Modelling Through Landfill Liners, in Indian Geotechnical Conference – 2010, GEOtrendz. December 16–18, 2010. IGS Mumbai Chapter & IIT Bombay (2010). [Google Scholar]
  4. E. Mehnert, B. R. Hensel, W. Brookfield, Coal combustion by-products and contaminant transport in groundwater. pp. 161-171 (1996). [Google Scholar]
  5. S. Duriez, “On the Use of Groundwater Contaminant Transport Modelling in Risk Assessments,” Department of Civil and Environmental Engineering, Division of GeoEngineering, Engineering Geology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden (2005). [Google Scholar]
  6. M. Y. Alazaiza, S. K. Ngien, M. M. Bob et al., Assessment of the behaviour of soil structure in double-porosity kaolin media using light transmission visualization (LTV) method, International Journal of Geotechnical Engineering, pp. 1-5 (2016). [Google Scholar]
  7. M. Y. Alazaiza, S. K. Ngien, M. M. Bob et al., Influence of Macro-pores on DNAPL Migration in Double-Porosity Soil Using Light Transmission Visualization Method, Transport in Porous Media, pp. 1-21 (2017). [Google Scholar]
  8. M. Y. Alazaiza, S. K. Ngien, M. B. Mustafa et al., Application of Light Reflection Method to Observe DNAPL Movement in Different Soil Media. The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang, (2016). [Google Scholar]
  9. M. Y. Alaziaza, S. K. Ngien, M. M. Bob et al., Investigation of Light Non-Aqueous Phase Liquid Migration Single and Double-Porosity Soil Using Light Transmission Visualization Method (LTV), The National Conference for Postgraduate Research, Universiti Malaysia Pahang (2016). [Google Scholar]
  10. L. K. Foong, N. A. Rahman, M. Z. Ramli, A Laboratory study of vibration effect for deformable double-porosity soil with different moisture content, Malaysian Journal of Civil Engineering, vol. 28 no. 3, pp. 207-222 (2016). [Google Scholar]
  11. R. Sa’ari, N. Rahman, Z. Yusof et al., Application of digital image processing technique in monitoring LNAPL migration in double porosity soil column, Jurnal Teknologi, vol. 72, no. 3, pp. 23-29 (2015). [Google Scholar]
  12. S. K. Ngien, N. A. Rahman, M. M. Bob et al., Observation of light non-aqueous phase liquid migration in aggregated soil using image analysis, Transport in porous media, vol. 92, no. 1, pp. 83-100 (2012). [CrossRef] [Google Scholar]
  13. S. A. Kamaruddin, W. N. A. Sulaiman, M. P. Zakaria et al., Laboratory simulation of LNAPL spills and remediation in unsaturated porous media using the image analysis technique: a review. pp. 1-7 (2011). [Google Scholar]
  14. S. Kamarudin, W. N. A. Sulaiman, N. Rahman et al., A review of laboratory and numerical simulations of hydrocarbons migrations in subsurface environments, Journal of Environmental Science and Technology, vol. 4, no. 3, pp. 191-214 (2011). [CrossRef] [Google Scholar]
  15. Access on 01/01/2018. [Google Scholar]
  16. BSI, “Methods of Testing Soil for Civil Engineering Purposes (BS 1377:Part 1-9). British Standards Institute, London.,” 1990. [Google Scholar]
  17. K. Pruess, C. Oldenburg, G. Moridis, TOUGH2 user's guide version 2, Lawrence Berkeley National Laboratory (2012). [Google Scholar]
  18. H. Bal, Y. Jannot, S. Gaye et al., Measurement and modelisation of the thermal conductivity of a wet composite porous medium: laterite based bricks with millet waste additive, Construction and Building materials, vol. 41, pp. 586-593 (2013). [Google Scholar]
  19. b. R. Ruzaimah, b. A. Abd Halid, b. M. N. Mohammad Soffi et al., Thermal and Structural Properties of Compressed Earth Brick (Laterite Soil), Proceedings of the International Postgraduate Conference on Engineering (IPCE 2010) 16 17 October 2010, Perlis, Malaysia (2010). [Google Scholar]
  20. G. Moses, “Hydraulic and contaminant transport performance of compacted bagasse ash treated foundry sand for use in waste containment facilities,” Ahmadu Bello University, Zaria, Nigeria, 2012. [Google Scholar]
  21. O. A. Eberemu, “Evaluation of bagasse ash treated lateritic soil as a suitable material for waste landfill barrier (liner and cover),” civil engineering, Ahmadu Bello University, Zaria, Nigeria, 2008. [Google Scholar]
  22. D. E. Daniel, Geotechnical practice for waste disposal: Springer Science & Business Media, DOI:10.1007/978-1-4615-3070-1, (2012). [Google Scholar]
  23. K. J. Mitchell, K. Soga, Fundamentals of Soil Behavior: 3rd Edition, John Wiley and Sons Inc., New Jersey, (2005). [Google Scholar]
  24. K. R. Rowe, Clayey barrier systems for waste disposal facilities: E & FN Spon Lond, (1995). [CrossRef] [Google Scholar]
  25. A. A. Amadi, Swelling characteristics of compacted lateritic soil–bentonite mixtures subjected to municipal waste leachate contamination, Environmental earth sciences, vol. 70, no. 6, pp. 2437-2442 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.