Open Access
Issue
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
Article Number 03003
Number of page(s) 5
Section Mechanical Engineering and Digital Manufacturing
DOI https://doi.org/10.1051/matecconf/201824903003
Published online 10 December 2018
  1. A. Zahedi, T. Tawakoli, and J. Akbari, “Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics,” Int. J. Mach. Tools Manuf., vol. 90, pp. 16–28, 2015. [CrossRef] [Google Scholar]
  2. A. Nere, H. More, A. Chordiya, P. Bhosale, and P. P. Sutar, “A Review on Replacement of Conventional Grinding Wheels with Super Abrasive Grinding Wheels,” Int. Res. J. Eng. Technol., vol. 3, no. 3, pp. 1370–1373, 2016. [Google Scholar]
  3. J. Chen, Q. Fang, and P. Li, “Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding,” Int. J. Mach. Tools Manuf., vol. 91, pp. 12–23, 2015. [CrossRef] [Google Scholar]
  4. B. K. Mishra, B. Yadav, S. K. Jha, and A. P. Burnwal, “Research in Computer Applications and Robotics Fuzzy Set Theory Approach To Model Super Abrasive Grinding Process Using Weighted Compensatory,” Int. J. Res. Comput. Appl. Robot., vol. 3, no. 5, pp. 62–68, 2015. [Google Scholar]
  5. P. O. Conceicao, M. Marchi, P. R. Aguiar, E. C. Bianchi, and T. V. Franca, “The correlation of vibration signal features in grinding of advanced ceramics,” IEEE Lat. Am. Trans., vol. 14, no. 9, 2016. [Google Scholar]
  6. Y. Shao, B. Li, and S. Y. Liang, “Predictive modeling of surface roughness in grinding of ceramics,” Mach. Sci. Technol., vol. 19, no. 2, pp. 325–338, 2015. [CrossRef] [Google Scholar]
  7. W. Liu, Z. Deng, Y. Shang, and L. Wan, “Effects of grinding parameters on surface quality in silicon nitride grinding,” Ceram. Int., vol. 43, no. 1, pp. 1571–1577, 2017. [CrossRef] [Google Scholar]
  8. S. Malkin and C. Guo, Grinding technology: theory and applications of machining with abrasives, 2nd ed. New York, NY, USA: Industrial Press, 2008. [Google Scholar]
  9. B. Thomas, E. David, and R. Manu, “Empirical modelling and parametric optimisation of surface roughness of silicon carbide advanced ceramics in surface grinding,” Int. J. Precis. Technol., vol. 5, no. 3–4, pp. 277–293, 2015. [CrossRef] [Google Scholar]
  10. S. K. Khare and S. Agarwal, “Predictive modeling of surface roughness in grinding,” in Procedia CIRP, 2015, vol. 31, pp. 375–380. [CrossRef] [Google Scholar]
  11. D. M. S. Ribeiro, P. R. Aguiar, L. F. G. Fabiano, D. M. D’Addona, and F. G. Baptista, “Spectra measurements using piezoelectric diaphragms to detect burn in grinding process,” IEEE Trans. Instrum. Meas., no. Made Revision, 2017. [Google Scholar]
  12. C. H. R. Martins, P. R. Aguiar, A. Frech, and E. C. Bianchi, “Tool condition monitoring of single-point dresser using acoustic emission and neural networks models,” IEEE Trans. Instrum. Meas., vol. 63, no. 3, pp. 667–679, 2014. [CrossRef] [Google Scholar]
  13. N. Ding, C. L. Zhao, X. C. Luo, and J. Shi, “An Intelligent Grinding Wheel Wear Monitoring System Based on Acoustic Emission,” Solid State Phenom., vol. 261, pp. 195–200, 2017. [CrossRef] [Google Scholar]
  14. S. Dolinšek and J. Kopač, “Acoustic emission signals for tool wear identification,” Wear, vol. 225–229, pp. 295–303, 1999. [CrossRef] [Google Scholar]
  15. P. R. Aguiar, A. G. O. Souza, E. C. Bianchi, R. R. Leite, and F. R. L. Dotto, “Monitoring the dressing operation in the grinding process,” Int. J. Mach. Mach. Mater., vol. 5, no. 1, pp. 3–22, 2009. [Google Scholar]
  16. A. Hassui, A. E. Diniz, J. F. G. Oliveira, J. Felipe, and J. J. F. Gomes, “Experimental evaluation on grinding wheel wear through vibration and acoustic emission,” Wear, vol. 217, no. 1, pp. 7–14, 1998. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.