Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 03026
Number of page(s) 5
Section Parallel Session II: Water System Technology
DOI https://doi.org/10.1051/matecconf/201824603026
Published online 07 December 2018
  1. Nobre G C, Tavares E. Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study[J]. Scientometrics, 2017, 111 (1): 463-492. [CrossRef] [Google Scholar]
  2. Ziemann M, Eren Y, El-Osta A. Gene name errors are widespread in the scientific literature[J]. Genome biology, 2016, 17 (1): 177. [CrossRef] [Google Scholar]
  3. Goodman A, Pepe A, Blocker A W, et al. Ten simple rules for the care and feeding of scientific data[J]. PLoS computational biology, 2014, 10 (4): e1003542. [Google Scholar]
  4. Howison J, Bullard J. Software in the scientific literature: Problems with seeing, finding, and using software mentioned in the biology literature[J]. Journal of the Association for Information Science and Technology, 2016, 67 (9): 2137-2155. [CrossRef] [Google Scholar]
  5. Beck F, Koch S, Weiskopf D. Visual analysis and dissemination of scientific literature collections with SurVis[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22 (1): 180-189. [CrossRef] [Google Scholar]
  6. Hirshkowitz M, Whiton K, Albert S M, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary[J]. Sleep Health, 2015, 1 (1): 40-43. [Google Scholar]
  7. Altena A J, Moerland P D, Zwinderman A H, et al. Understanding big data themes from scientific biomedical literature through topic modeling[J]. Journal of Big Data, 2016, 3 (1): 23. [CrossRef] [Google Scholar]
  8. Grainger S, Mao F, Buytaert W. Environmental data visualisation for non-scientific contexts: Literature review and design framework[J]. Environmental Modelling & Software, 2016, 85: 299-318. [CrossRef] [Google Scholar]
  9. Dutra A, Ripoll-Feliu V M, Fillol A G, et al. The construction of knowledge from the scientific literature about the theme seaport performance evaluation[J]. International Journal of Productivity and Performance Management, 2015, 64 (2): 243-269. [CrossRef] [Google Scholar]
  10. Swain M C, Cole J M. Chemdataextractor: a toolkit for automated extraction of chemical information from the scientific literature[J]. Journal of chemical information and modeling, 2016, 56 (10): 1894-1904. [CrossRef] [Google Scholar]
  11. Burley S K, Berman H M, Christie C, et al. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education[J]. Protein Science, 2018, 27 (1): 316-330. [CrossRef] [Google Scholar]
  12. Li J, Jovanovic A, Klimek P, et al. Bibliometric analysis of fracking scientific literature[J]. Scientometrics, 2015, 105 (2): 1273-1284. [CrossRef] [Google Scholar]
  13. Tkaczyk D, Szostek P, Fedoryszak M, et al. CERMINE: automatic extraction of structured metadata from scientific literature[J]. International Journal on Document Analysis and Recognition (IJDAR), 2015, 18 (4): 317-335. [CrossRef] [Google Scholar]
  14. Domingo J L. Safety assessment of GM plants: An updated review of the scientific literature[J]. Food and Chemical Toxicology, 2016, 95: 12-18. [CrossRef] [Google Scholar]
  15. Agapiou A, Lysandrou V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015[J]. Journal of Archaeological Science: Reports, 2015, 4: 192-200. [CrossRef] [Google Scholar]
  16. Bornmann L, Haunschild R. Which people use which scientific papers? An evaluation of data from F1000 and Mendeley[J]. Journal of informetrics, 2015, 9 (3): 477-487. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.