Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 03013
Number of page(s) 7
Section Parallel Session II: Water System Technology
Published online 07 December 2018
  1. Peng M, Guang C Y, Zhu J H, et al. A survey of topic detection and tracking technology for social media texts[J]. Journal of Wuhan University(Science Edition), 2016, 62 (3): 197-217. [Google Scholar]
  2. Cool C T, Claravall M C, Hall J L, et al. Social media as a risk communication tool following typhoon Haiyan[J]. Western Pacific Surveillance & Response Journal Wpsar, 2015, 6 (Suppl 1):86-90. [CrossRef] [Google Scholar]
  3. Zeng D J, Cao Z D. Big data solutions for emerging situation awareness and decision [J]. China Emergency Management, 2013 (11): 15-23. [Google Scholar]
  4. Terpstra T, Vries A D, Stronkman R, et al. Towards a realtime twitter analysis during crises for operational crisis management[C]. Proceedings of the 9th International ISCRAM Conference, 2012 (4): 1-9. [Google Scholar]
  5. Vieweg S, Hughes A L, Starbird K, et al. Microblogging during two natural hazards events:what twitter may contribute to situational awareness[C]. Proceedings of the SIGCHI Conference on Human Factors in Computing System. New York, USA:ACM. [Google Scholar]
  6. Bai H, Lin X G. Sina weibo disaster information detection based on chinese short text classification[J]. Journal of Catastrophology, 2016, 31 (2): 19-23. [Google Scholar]
  7. Murzintcev N, Cheng C. Disaster hashtags in social media[J]. International Journal of Geo-Information, 2017, 6 (7): 204. [CrossRef] [Google Scholar]
  8. Chen L, Hossain K S M T, Butler P, et al. Flu Gone Viral: Syndromic surveillance of flu on Twitter using temporal topic models[C]. IEEE International Conference on Data Mining. IEEE Computer Society, 2014: 755-760. [Google Scholar]
  9. Wang Z, Ye X, Tsou M H. Spatial, temporal, and content analysis of Twitter for wildfire hazards[J]. Natural Hazards, 2016, 83 (1): 523-540. [CrossRef] [Google Scholar]
  10. Xu J H, Chu J X, Nie G Z, et al. Earthquake disaster information extraction based on location microblog[J]. Journal of Natural Disasters, 2015 (5): 12-18. [Google Scholar]
  11. Wang Y D, Li H, Wang T, et al. The mining and analysis of emergency information in sudden events based on social media[J]. Geomatics and Information Science of Wuhan University, 2016, 43 (3): 290-297. [Google Scholar]
  12. Chen Z, Luo N X, Gao T. Research of typhoon disaster assessment based on VGI[J]. Geomatics & Spatial Information Technology, 2016 (10): 33-34. [Google Scholar]
  13. Bakillah M, Li R Y, Liang S H L. Geo-located community detection in Twitter with enhanced fastgreedy optimization modularity: the case study of typhoon Haiyan[J]. International Journal of Geographical Information Science, 2015, 29 (2): 258-279. [CrossRef] [Google Scholar]
  14. Zhang H P, Yu H K, Xiong D Y, et al. HHMMBased chinese lexical analyzer ICTCLAS[C]. Proceedings of the 2nd SigHan Workshop. 2003. 184-187. [Google Scholar]
  15. Meesad P, Boonrawd P, Nuipian V. A Chi-Square-Test for word importance differentiation in text classification[C]. International Conference on Information and Electronics Engineering, 2011. [Google Scholar]
  16. Jones K S. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 1972, 28 (1): 11-21. [CrossRef] [Google Scholar]
  17. Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. [Google Scholar]
  18. Bengio Y, Gr Y. No unbiased estimator of the variance of K-Fold cross-kalidation[J]. Journal of Machine Learning Research, 2003, 5 (22): 1089-1105. [Google Scholar]
  19. Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users;real-time event detection by social sensors[C]. Proceedings of the 19th International Conference on World Wide Web. New York, USA:ACM, 2010: 851-860. [Google Scholar]
  20. Chen Y G. Reconstructing the mathematical process of spatial autocorrelation based on Moran’s statistics[J]. Geographical Research, 2009, 28 (6): 1449-1463. [Google Scholar]
  21. Qi Y, Wu J G. Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices[J]. Landscape Ecology, 1996, 11 (1): 39-49. [CrossRef] [Google Scholar]
  22. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013 (1): 28-36. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.