Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01098
Number of page(s) 11
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601098
Published online 07 December 2018
  1. Anderson, J. K., Wondzell, S. M., Gooseff, M. N., & Haggerty, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. Hydrological Processes, 19(15),2931-2949. [CrossRef] [Google Scholar]
  2. Bartram, J., & Ballance, R. (Eds.). (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. CRC Press. [Google Scholar]
  3. Boano, F., Camporeale, C., Revelli, R., & Ridolfi, L. (2006). Sinuosity‐driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 33(18). [CrossRef] [Google Scholar]
  4. Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P., & Hare, D. K. (2012). Using highresolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resources Research, 48(2). [CrossRef] [Google Scholar]
  5. Buffington, J. M., & Tonina, D. (2009). Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 3(3), 1038-1062. [CrossRef] [Google Scholar]
  6. Conant, B. (2004). Delineating and quantifying ground water discharge zones using streambed temperatures. Ground water, 42(2), 243-257. [CrossRef] [Google Scholar]
  7. Essaid, H. I., Zamora, C. M., McCarthy, K. A., Vogel, J. R., & Wilson, J. T. (2008).Using heat to characterize streambed water flux variability in four stream reaches. Journal of environmental quality, 37(3), 1010-1023. [CrossRef] [Google Scholar]
  8. Ferguson, G., & Bense, V. (2011). Uncertainty in 1D Heat‐Flow Analysis to Estimate Groundwater Discharge to a Stream. Ground Water, 49(3), 336-347. [CrossRef] [Google Scholar]
  9. Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J., & Ruehl, C. (2006). Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resources Research, 42(10). [CrossRef] [Google Scholar]
  10. Healy, R. W., & Ronan, A. D. (1996). Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media: Modification of the US Geological Survey’s computer program VS2DT. US Geological Survey. [Google Scholar]
  11. Hester, E. T., & Doyle, M. W. (2008). In‐stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3). [CrossRef] [Google Scholar]
  12. McCallum, A. M., Andersen, M. S., Rau, G. C., & Acworth, R. I. (2012). A 1‐D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resources Research, 48(11). [CrossRef] [Google Scholar]
  13. Irvine, D. J., Lautz, L. K., Briggs, M. A., Gordon, R. P., & McKenzie, J. M. (2015). Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. Journal of Hydrology, 531, 728-737. [CrossRef] [Google Scholar]
  14. Keery, J., Binley, A., Crook, N., & Smith, J. W. (2007). Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. Journal of Hydrology, 336(1), 1-16. [CrossRef] [Google Scholar]
  15. Hickin, E. J., & Sichingabula, H. M. (1988).The geomorphic impact of the catastrophic October 1984 flood on the planform of Squamish River, southwestern British Columbia. Canadian Journal of Earth Sciences, 25(7), 1078-1087. [CrossRef] [Google Scholar]
  16. Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater? surface water interactions: a review. Hydrology and Earth System Sciences Discussions, 10(6), 873-887. [CrossRef] [Google Scholar]
  17. Kalbus, E., Schmidt, C., Molson, J. W., Reinstorf, F., & Schirmer, M. (2009). Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrology and Earth System Sciences, 13(1), 69-77. [CrossRef] [Google Scholar]
  18. Lautz, L. K. (2012). Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records. Journal of hydrology, 464, 199-215. [CrossRef] [Google Scholar]
  19. Lautz, L. K., Kranes, N. T., & Siegel, D. I. (2010). Heat tracing of heterogeneous hyporheic exchange adjacent to in‐stream geomorphic features. Hydrological processes, 24(21), 3074-3086. [CrossRef] [Google Scholar]
  20. Lautz, L. K., & Ribaudo, R. E. (2012).Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy. Hydrogeology Journal, 20(7), 1223-1238. [CrossRef] [Google Scholar]
  21. Lu, C. P., Shu, L. C., & Chen, X. H. (2012).Numerical analysis of the impacts of bedform on hyporheic exchange. Advances in Water Science, 23(6), 789-795. (in Chinese) [Google Scholar]
  22. Parsons, M. L. (1970). Groundwater thermal regime in a glacial complex. Water Resources Research, 6(6), 1701-1720. [CrossRef] [Google Scholar]
  23. Rau, G. C., Andersen, M. S., McCallum, A. M., Roshan, H., & Acworth, R. I. (2014).Heat as a tracer to quantify water flow in near-surface sediments. Earth-Science Reviews, 129, 40-58. [CrossRef] [Google Scholar]
  24. Schmidt, C., Bayer-Raich, M., & Schirmer, M. (2006). Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrology and Earth System Sciences Discussions Discussions, 3(4), 1419-1446. [CrossRef] [Google Scholar]
  25. Schumm, S. A., & Khan, H. R. (1972). Experimental study of channel patterns. Geological Society of America Bulletin, 83(6), 1755-1770. [CrossRef] [Google Scholar]
  26. Skinner, K. D. (2006). Estimating streambed seepage using heat as a tracer on the Lower Boise River, canyon County, Idaho. US Department of the Interior, US Geological Survey. [Google Scholar]
  27. Stallman, R. W. (1965). Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature. Journal of geophysical Research, 70(12), 2821-2827. [CrossRef] [Google Scholar]
  28. Suzuki, S. (1960). Percolation measurements based on heat flow through soil with special reference to paddy fields. Journal of Geophysical Research, 65(9), 2883-2885. [CrossRef] [Google Scholar]
  29. Swanson, T. E., & Cardenas, M. B. (2011). Ex-Stream: A MATLAB program for calculating fluid flux through sediment–water interfaces based on steady and transient temperature profiles. Computers & Geosciences, 37(10), 1664-1669. [CrossRef] [Google Scholar]
  30. Tonina, D., & Buffington, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1063-1086. [CrossRef] [Google Scholar]
  31. Vogt, T., Schneider, P., Hahn-Woernle, L., & Cirpka, O. A. (2010). Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. Journal of Hydrology, 380(1), 154-164. [CrossRef] [Google Scholar]
  32. Voytek, E. B., Drenkelfuss, A., Day‐Lewis, F. D., Healy, R., Lane, J. W., & Werkema, D. (2014). 1DTempPro: analyzing temperature profiles for groundwater/surface‐water exchange. Groundwater, 52(2), 298-302. [CrossRef] [Google Scholar]
  33. Winter, T. C. (Ed.). (1998). Ground water and surface water: a single resource (Vol. 1139). DIANE Publishing Inc. [Google Scholar]
  34. Wroblicky, G. J., Campana, M. E., Valett, H. M., & Dahm, C. N. (1998).Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resources Research, 34(3), 317-328. [CrossRef] [Google Scholar]
  35. Wu, G., Shu, L., Lu, C., Chen, X., Zhang, X., Appiah-Adjei, E. K., & Zhu, J. (2015).Variations of streambed vertical hydraulic conductivity before and after a flood season. Hydrogeology Journal, 23(7), 1603-1615. [CrossRef] [Google Scholar]
  36. Wu, G., Shu, L., Lu, C., Chen, X. (2016). The heterogeneity of 3-D vertical hydraulic conductivity in a streambed[J]. Hydrology Research, 47(1):nh2015224. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.