Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01077
Number of page(s) 7
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601077
Published online 07 December 2018
  1. Ming B, Liu P, Guo S, et al. Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China[J]. Applied Energy, 2018, 228. [Google Scholar]
  2. Greve Z D. Robust optimisation for hydroelectric system under uncertainty[J]. Power Systems IEEE Transactions on, 2018. [Google Scholar]
  3. Ming B, Liu P, Cheng L, et al. Optimal daily generation scheduling of large hydro–photovoltaic hybrid power plants[J]. Energy Conversion & Management, 2018, 171:528-540. [CrossRef] [Google Scholar]
  4. Lin L, Li L, Jia L. An optimal capacity configuration method of wind/PV and energy storage cogeneration system[C]// Pes General Meeting | Conference & Exposition. IEEE, 2014:1-5. [Google Scholar]
  5. X. Wang, Y. Mei, Y. Kong, Y. Lin, and H. Wang, “Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system,” ENERGY, vol. 134, pp. 813-839, 2017. [CrossRef] [Google Scholar]
  6. Chen Y, Wang Y, Kirschen D S, et al. Model-Free Renewable Scenario Generation Using Generative Adversarial Networks[J]. IEEE Transactions on Power Systems, 2017, PP(99):1-1. [Google Scholar]
  7. Ma X Y, Sun Y Z, Fang H L. Scenario Generation of Wind Power Based on Statistical Uncertainty and Variability[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4):894-904. [CrossRef] [Google Scholar]
  8. Molnar P, Steinle Camargo L A, Soares Ramos D. Applying copulas functions for wind and hydro complementarity evaluation: A Brazilian case[C]// European Energy Market. IEEE, 2015:1-6. [Google Scholar]
  9. Lee D, Baldick R. Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model[J]. IEEE Transactions on Power Systems, 2016, 32(1):400-410. [CrossRef] [Google Scholar]
  10. Sideratos G, Hatziargyriou N D. Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks[J]. IEEE Transactions on Power Systems, 2012, 27(4):1788-1796. [CrossRef] [Google Scholar]
  11. Vagropoulos S I, Kardakos E G, Simoglou C K, et al. ANN-based scenario generation methodology for stochastic variables of electric power systems[J]. Electric Power Systems Research, 2016, 134(29 Suppl 2):9-18. [CrossRef] [Google Scholar]
  12. Dahl G E, Sainath T N, Hinton G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013:8609-8613. [Google Scholar]
  13. Klambauer G, Unterthiner T, Mayr A, et al. Self-Normalizing Neural Networks[J]. 2017. [Google Scholar]
  14. Chen K, Chen K, Wang Q, et al. Short-term Load Forecasting with Deep Residual Networks[J]. IEEE Transactions on Smart Grid, 2018, PP(99):1-1. [CrossRef] [Google Scholar]
  15. Al-Khayyal F A, Falk J E. Jointly Constrained Biconvex Programming[J]. Mathematics of Operations Research, 1983, 8(2):273-286. [CrossRef] [MathSciNet] [Google Scholar]
  16. Lima R M, Marcovecchio M G, Novais A Q, et al. On the Computational Studies of Deterministic Global Optimization of Head Dependent Short-Term Hydro Scheduling[J]. IEEE Transactions on Power Systems, 2013, 28(4):4336-4347. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.