Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01070
Number of page(s) 7
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601070
Published online 07 December 2018
  1. J. Gupta, P. van der Zaag, Inter basin water transfers and integrated water resources management: where engineering, science and politics interlock. Phys. Chem. Earth A/B/C 33, 28–40 (2008). [CrossRef] [Google Scholar]
  2. S.Jiang, L. Ren, B. Yong, V.P. Singh, X.L. Yang, F. Yuan, Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. Hydro. Process, 25: 2492-2505 (2011). [CrossRef] [Google Scholar]
  3. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Science advances, 2(2), e1500323 (2016). [CrossRef] [PubMed] [Google Scholar]
  4. W. Wang, Q. Shao, T. Yang, S. Peng, W. Xing, F. Sun, Y. Luo, Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River Basin, China. Hydrological Processes, 27(8), 1158-1174 (2013). [CrossRef] [Google Scholar]
  5. C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity. Nature 467, 555-561 (2010). [CrossRef] [PubMed] [Google Scholar]
  6. Z. Yu, Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model system. Global and Planetary Change, 25, 1-17 (2000). [CrossRef] [Google Scholar]
  7. X. Zhao, J. Liu, Q. Liu, M.R. Tillotson, D. Guan, K. Hubacek, Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. 112 (4),1031–1035 (2015). [CrossRef] [Google Scholar]
  8. R. Wang, J. Zimmerman, Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World. Environ. Sci. Technol. 50 (10), 5143−5153 (2016). [CrossRef] [Google Scholar]
  9. Q. Zeng, L. Qin, X. Li, The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Science of the Total Environment, 536, 675-686 (2015). [CrossRef] [Google Scholar]
  10. V. D. P. R. da Silva, S. D. de Oliveira, A. Y. Hoekstra, J. Dantas Neto, J. H. B. Campos, C.C. Braga, R.M. de Holanda, Water footprint and virtual water trade of Brazil. Water 8(11), 517 (2016). [CrossRef] [Google Scholar]
  11. R. Flach, Y. Ran, J. Godar, L. Karlberg, C. Suavet, towards more spatially explicit assessments of virtual water flows: linking local water use and scarcity to global demand of Brazilian farming commodities. Environ Res Lett 11(7), 075003 (2016). [CrossRef] [Google Scholar]
  12. S. Tamea, F. Laio, L. Ridolfi. Global effects of local food-production crises: a virtual water perspective. Scient rep 6, 18803 (2016). [Google Scholar]
  13. Q. Ye, Y. Li, L. Zhuo, W. Zhang, W. Xiong, C. Wang, P. Wang. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water research, 129, 264-276 (2018). [CrossRef] [Google Scholar]
  14. C. Dalin, I. Rodríguez-Iturbe. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016) [Google Scholar]
  15. S. Pfister, A. Koehler, S. Hellweg. Assessing the environmental impacts of freshwater consumption in LCA. Environmental science & technology, 43(11), 4098-4104 (2009). [CrossRef] [PubMed] [Google Scholar]
  16. J. Liu, Y. Wang, Z. Yu, X. Cao, L. Tian, S. Sun, P. Wu. A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecol Indic 72, 870-880 (2017). [CrossRef] [Google Scholar]
  17. J. Liu, P. Wu, Y. Wang. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China. Journal of the Science of Food and Agriculture 94(14), 2992-3000 (2014). [CrossRef] [Google Scholar]
  18. S.K. Sun, P.T. Wu, Y.B. Wang. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci Total Environ 444, 498-507 (2013). [CrossRef] [Google Scholar]
  19. A.Y. Hoekstra, M.M. Mekonnen. The water footprint of humanity. PNAS 109(9): 3232-3237 (2012) [Google Scholar]
  20. J.G. Liu, Q.Y. Liu, H. Yang. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 60, 434–441 (2016). [CrossRef] [Google Scholar]
  21. K. Feng, K. Hubacek, S. Pfister, Y. Yu, L. Sun. Virtual Scarce Water in China. Environ. Sci. Technol. 48 (14), 7704−7713 (2014). [CrossRef] [Google Scholar]
  22. M. Lenzen, D. Moran, K. Kanemoto, B. Foran, L. Lobefaro, A. Geschke 2012 International trade drives biodiversity threats in developing nations Nature 486 109–112(2012) [Google Scholar]
  23. M. Konar, K.K. Caylor. Virtual water trade and development in Africa. Hydrol. Earth Syst. Sci. 17 (10),3969-3982 (2013). [CrossRef] [Google Scholar]
  24. C. Zhang, L.D. Anadon. A multi-regional inputoutput analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 100:159-172 (2014). [CrossRef] [Google Scholar]
  25. C. Zoumides, A. Bruggeman, M. Hadjikakou, T. Zachariadis. Policy-relevant indicators for semi-arid nations: the water footprint of crop production and supply utilization of Cyprus. Ecol. Indic. 43,205-214 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.