Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01059
Number of page(s) 13
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601059
Published online 07 December 2018
  1. XIE Y, ZHANG H, ZHU Y, ZHAO L, YANG J, CHA F, LIU C, WANG C and GUO T. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. Journal of Integrative Agriculture 2017; 3: 614-625. [CrossRef] [Google Scholar]
  2. Xu YM, Li Y, Ouyang W, Hao FH, Ding ZL and Wang DL. The impact of long-term agricultural development on the wetlands landscape pattern in Sanjiang Plain. Procedia Environmental Sciences 2012a: 1922-1932. [Google Scholar]
  3. Ouyang W, Xu Y, Hao F, Wang X, Siyang C and Lin C. Effect of long-term agricultural cultivation and land use conversion on soil nutrient contents in the Sanjiang Plain. Catena 2013: 243-250. [CrossRef] [Google Scholar]
  4. Gao Y, Yang L, Shen X, Li X, Sun J, Duan A and Wu L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agricultural Water Management 2014: 1-10. [CrossRef] [Google Scholar]
  5. Liu EK, Mei XR, Yan CR, Gong DZ and Zhang YQ. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management 2016: 75-85. [CrossRef] [Google Scholar]
  6. Tegos A, Malamos N and Koutsoyiannis D. A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman– Monteith formula. Journal of Hydrology 2015: 708-717. [CrossRef] [Google Scholar]
  7. Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D and Fereres E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agronomy Journal 2009; 3: 448. [CrossRef] [Google Scholar]
  8. Steduto P, Raes D, Hsiao TC, Fereres E, Heng L, Izzi G and Hoogeveen J. AquaCrop: a new model for crop prediction under water deficit conditions. Options Méditerranéennes Série A Séminaires Méditerranéens 2008; 80: 285-292. [Google Scholar]
  9. Steduto P and Albrizio R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea. Agricultural and Forest Meteorology 2005; 3-4: 269-281. [CrossRef] [Google Scholar]
  10. Steduto P, Hsiao TC, Raes D and Fereres E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 2009a; 3: 426. [CrossRef] [Google Scholar]
  11. Araya A, Keesstra SD and Stroosnijder L. Simulating yield response to water of Teff (Eragrostis tef) with FAO’s AquaCrop model. Field Crops Research 2010a; 1–2:196-204. [CrossRef] [Google Scholar]
  12. Vanuytrecht E, Raes D and Willems P. Considering sink strength to model crop production under elevated atmospheric CO2. Agricultural and Forest Meteorology 2011; 12: 1753-1762. [CrossRef] [Google Scholar]
  13. Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati ME, Barati MA and Rahnama A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management 2011; 1: 1-8. [CrossRef] [Google Scholar]
  14. Xu YM, Li Y, Ouyang W, Hao FH, Ding ZL and Wang DL. The impact of long-term agricultural development on the wetlands landscape pattern in Sanjiang Plain. Procedia Environmental Sciences 2012b: 1922-1932. [Google Scholar]
  15. Gao-bao H, CHAI Q, FENG F and Ai-zhong AY. Effects of Different Tillage Systems on Soil Properties, Root Growth, Grain Yield, and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 2012, 11, pp. 1286-1296. [Google Scholar]
  16. Yansui L, Hong G, Gao J and Xusheng D. The causes and environmental effects of land use conversion during agricultural restructuring in Northeast China 2004; 4: 488-494. [Google Scholar]
  17. Li J, Zhu T, Mao X and Adeloye AJ. Modeling crop water consumption and water productivity in the middle reaches of Heihe River Basin. Computers and Electronics in Agriculture 2016: 242-255. [CrossRef] [Google Scholar]
  18. Mkhabela MS and Bullock PR. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management 2012a: 16-24. [CrossRef] [Google Scholar]
  19. Raes D, Geerts S, Kipkorir E, Wellens J and Sahli A. Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management 2006a; 3: 335-357. [CrossRef] [Google Scholar]
  20. Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, Garcia Vila M and Mejias Moreno P. AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software 2014: 351-360. [CrossRef] [Google Scholar]
  21. Mkhabela MS and Bullock PR. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management 2012b: 16-24. [CrossRef] [Google Scholar]
  22. Steduto P, Hsiao TC, Raes D and Fereres E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 2009b; 3: 426. [CrossRef] [Google Scholar]
  23. Addiscott T, Smith J and Bradbury N. Critical Evaluation of Models and Their Parameters. Journal of Environmental Quality 1995; 24: 803-807. [CrossRef] [Google Scholar]
  24. Nain A and K K. Calibration and validation of CERES model for simulating water and nutrients in Germany. Modelling Water and Nutrient Dynamics in Soil– Crop Systems 2007: 161-181. [CrossRef] [Google Scholar]
  25. Salazar O, Wesström I, Youssef MA, Skaggs RW and Joel A. Evaluation of the DRAINMOD–N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden. Agricultural Water Management 2009; 2: 267-281. [CrossRef] [Google Scholar]
  26. Jamieson PD, Porter JR and Wilson DR. A test of computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Research 1991; 27: 337-350. [CrossRef] [Google Scholar]
  27. Raes D, Geerts S, Kipkorir E, Wellens J and Sahli A. Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management 2006b; 3: 335-357. [CrossRef] [Google Scholar]
  28. Araya A, Keesstra SD and Stroosnijder L. Simulating yield response to water of Teff (Eragrostis tef) with FAO’s AquaCrop model. Field Crops Research 2010b; 1-2: 196-204. [CrossRef] [Google Scholar]
  29. Stricevic R, Cosic M, Djurovic N, Pejic B and Maksimovic L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management 2011; 10: 1615-1621. [CrossRef] [Google Scholar]
  30. Karunaratne A and Azam-Ali SN. Calibration and validation of FAO-AquaCrop model for irrigated and water deficient bambara groundnut. Experimental Agriculture 2011; 3: 509-527. [CrossRef] [Google Scholar]
  31. Hanafi MM, Shahidullah SM, Niazuddin M, Aziz ZA and Mohammud CH. Crop water requirement at different growing stages of pineapple in BRIS soil 2010, 8, pp. 914-918. [Google Scholar]
  32. [31]Kousari MR, Asadi Zarch MA, Ahani H and Hakimelahi H. A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Climatic Change 2013; 1-2: 277-298. [CrossRef] [Google Scholar]
  33. Nagler PL, Glenn EP, Kim H, Emmerich W, Scott RL, Huxman TE and Huete AR. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. Journal of Arid Environments 2007; 3: 443-462. [CrossRef] [Google Scholar]
  34. Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D and Caballero Y. Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geoscience 2010; 3: 234-243. [CrossRef] [Google Scholar]
  35. Daly E and Porporato A. Impact of hydroclimatic fluctuations on the soil water balance. Water Resources Research 2006; 6. [Google Scholar]
  36. Kendy E, Gérard-Marchant P, Todd Walter M, Zhang Y, Liu C and Steenhuis TS. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes 2003; 10: 2011-2031. [CrossRef] [Google Scholar]
  37. Boonjung H and Fukai S. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield 1996; 1: 47-55. [Google Scholar]
  38. Shen JY, Zhao DD, Han HF, Zhou XB and Li QQ. Effects of straw mulching on water consumption characteristics and yield of different types of summer maize plants. Plant Soil and Environment 2012; 4: 161-166. [CrossRef] [Google Scholar]
  39. Abdel-Wahed M, Amin A and El-Rashad S. Physiological effect of some bioregulators on vegetative growth, yield and chemical constituents of of yellow maize plants. World Journal of Agricultural Science 2006; 2: 149-155. [Google Scholar]
  40. Bouazzama B, Xanthoulis D, Bouaziz A, Ruelle P and J CM. Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in semi-arid clilmate of Tadla (Morocco 2012, 4, pp. 468-477. [Google Scholar]
  41. Yi L, Yufang S, Shenjiao Y, Shiqing L and Fang C. Effect of mulch and irrigation practices on soil water, soil temperature and the grain yield of maize (Zea mays L) in Loess Plateau, China. African Journal of Agricultural Research 2011; 10: 2175-2182. [Google Scholar]
  42. Hutton RJ and B RLB. A partial root zone drying irrigation strategy for citrus—Effects on water use efficiency and fruit characteristics. Agricultural Water Management 2011: 1484-1496. [Google Scholar]
  43. Onyango JW and O WK. Rainfall and soils as causative factors of poor fertilizer response in maize and sorghum in Weat Kenya. Agricultural Water Management 2015; 32: 112-119. [Google Scholar]
  44. Karim MA, Fracheboud Y and Stamp P. Effect of High Temperature on Seedling Growth and Photosynthesis of Tropical Maize Genotypes. Jouarl of Agronomy & Crop Science 2000; 4: 217-223. [CrossRef] [Google Scholar]
  45. Tollenaar M and Hunter RB. A Photoperiod and Temperature Sensitive Period for Leaf Number of Maize. Crop Science 1983: 457-460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.