Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01056
Number of page(s) 8
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601056
Published online 07 December 2018
  1. J. Fan, C. Wang, G. Guan, W. Cui. Automatic operation control system of middle Arizona water transfer works of USA. Yangtze River, (02): 4-5+58. (2006) (in Chinese) [Google Scholar]
  2. G. Guan, A.J. Clemmens, T.F. Kacerek, B.T. Wahlin. Applying water-level difference control to Central Arizona Project. J IRRIG DRAIN E, 137(12), 747-753 (2011) [CrossRef] [Google Scholar]
  3. M Foo, S.K. Ooi, E. Weyer. System Identification and Control of The Broken River. IEEE Trans. on Control Syst. Technol, 22(2), 618-634 (2014) [CrossRef] [Google Scholar]
  4. S. Fang, Y. Li, B. Wu. Constant water levels at the upstream of sluice gates in a large-scale transferring channel. AWS, (01), 68-71 (2008) (in Chinese with English abstract) [Google Scholar]
  5. S. Fang, B. Wu. Operation of Allowing fluctuating of water level in the middle route of the South-to-North Water Transfer Channel. Chinese Journal of Hydrodynamics Ser A, 22(05), 633-639 (2007) (in Chinese with English abstract) [Google Scholar]
  6. G. Liu, G. Guan, C. Wang. Transition mode of long distance water delivery project before freezing in winter. Journal of Hydroinformatics, 15(15), 306-320 (2013) [CrossRef] [Google Scholar]
  7. G. Liu, G. Guan, C. Wang. Transition mode of the middle route of South-to-North Water Transfer Project before freezing: proceedings of the IEEE International Conference on Networking, Sensing and Control, Icnsc Delft, the Netherlands (2011) [Google Scholar]
  8. S. Barbara. PID controller performance assessment based on closedloop response data: PhD thesis in Chemical Engineering, University of California, USA (1999) [Google Scholar]
  9. J.P. Baume, P.O. Malaterre, J. Sau. Tuning of PI controllers for an irrigation canal using optimization tools. Proc of the Uscid Workshop (1999). [Google Scholar]
  10. C.M. Burt, R.S. Mills, R.D. Khalsa, V. Ruiz C. Improved proportional-integral (PI) logic for canal automation. J IRRIG DRAIN E, 124(1), 53-57 (1998) [CrossRef] [Google Scholar]
  11. J. Dong. PI/PID controller designs for linear multivariable, SISO nonlinear and two degree of freedom control systems [M] (1998). [Google Scholar]
  12. X. Litrico, V. Fromion. Tuning of robust distant downstream PI controllers for an irrigation canal pool. I: Theory. J IRRIG DRAIN E, 132(4), 359-368 (2006) [CrossRef] [Google Scholar]
  13. X. Litrico, V. Fromion, J.P. Baume. Tuning of robust distant downstream PI controllers for an irrigation canal pool. II: Implementation issues. J IRRIG DRAIN E, 132(4), 369-379 (2006) [CrossRef] [Google Scholar]
  14. M.S. Mahmoud. Stabilization of time-delay systems by PID controllers: proceedings of the Systems, Signals and Devices[C], 2009 SSD 6th International Multi-Conference (2009) [Google Scholar]
  15. P.O. Malaterre. PILOTE: Linear quadratic optimal controller for irrigation canals. J IRRIG DRAIN E, 124(4), 187-194 (1998) [CrossRef] [Google Scholar]
  16. V. Volodymyr, L. Andriy, K. Klaus. Two types of adaptive sampling in networked PID control: timevariant periodic and deadband sampling: proceedings of the 2007 17th International Crimean Conference - Microwave & Telecommunication Technology (2007) [Google Scholar]
  17. S. Zamani, A.P. Rizi, S. Isapoor. The effect of design parameters of an irrigation canal on tuning of coefficients and performance of a PI controller. Irrigation And Drainage, 64(4), 519-534 (2015) [CrossRef] [Google Scholar]
  18. J.G. Ziegler. Optimal setting for automatic controller. Trans Asme, 64 (1942) [Google Scholar]
  19. X. Litrico, P.O. Malaterre, J.P. Baume, P.Y. Vion, J. Ribot-Bruno. Automatic tuning of PI controllers for an irrigation canal pool. J IRRIG DRAIN E, 133(1), 27-37 (2007) [CrossRef] [Google Scholar]
  20. B.T. Wahlin, A.J. Clemmens. Automatic downstream water-level feedback control of branching canal networks: theory. J IRRIG DRAIN E, 132(3), 198-207 (2006) [CrossRef] [Google Scholar]
  21. B.T. Wahlin, A.J. Clemmens. Automatic Downstream Water-Level Feedback Control of Branching Canal Networks: Simulation Results. J IRRIG DRAIN E, 132(3), 208-219 (2006) [CrossRef] [Google Scholar]
  22. Wuhan University. Simulation and control of canal system V1.0[P]. China: 2011SR034392, 2011-06-03. [Google Scholar]
  23. J. Schuurmans, O.H. Bosgra, R. Brouwer. Openchannel flow model approximation for controller design. Applied Mathematical Modelling, 19(9), 525-530 (1995) [CrossRef] [Google Scholar]
  24. J. Schuurmans, A.J. Clemmens, S. Dijkstra, A. Hof, R. Brouwer. Modeling of irrigation and drainage canals for controller design. J IRRIG DRAIN E, 125(6), 338-344 (1999) [CrossRef] [Google Scholar]
  25. G. Guan, K. Zhong, W. Liao, C. Xiao, H. Su. Optimization of controller parameters based on nondimensional performance indicators for canal systems. Transactions of CSAE, 34(07), 90-99 (2018) (in Chinese with English abstract) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.