Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01029
Number of page(s) 9
Section Main Session: Water System Operations
Published online 07 December 2018
  1. Zuo, Q. T., Li, L. Prediction method of regional water demand under the condition of social and economic security [J]. Water Resources Protection, 2008,24(1):6-11. [Google Scholar]
  2. Wang, Z., Yang, X. J., Liu, L. Research on water demand prediction model based on hybrid itelligent algorithm to optimize LS-SVM [C]. 2012. [Google Scholar]
  3. Liu, W. L. A comparative study on several forecasting models of water demand [J]. Yangtze River, 2011,42(13):19-22. [Google Scholar]
  4. Li, W. L., Li, Y. X. Hydrological prediction based on Particle Swarm Optimization Least Squares Support Vector Machine [J]. Computer Application, 2012,32(4):1188-1190. [CrossRef] [Google Scholar]
  5. Zhang, L.P. Theory and practice of Particle Swarm Optimization algorithm [D]. Zhejiang University, 2005. [Google Scholar]
  6. Kennedy J, Eberhart R. Particle swarm optimization [C]. 1942-1948. [Google Scholar]
  7. Yuan, X. H., Wang, C., Zhang, Y. C., et al. Application of Particle Swarm Optimization in power system [J]. Grid technology, 2004,28(19):14-19. [Google Scholar]
  8. Gao, Y., Xie, S. L. Particle Swarm Optimization algorithm based on simulated annealing[J]. Computer Engineering and Application, 2004,40(1):47-50. [Google Scholar]
  9. Zhang, Y. M., Jiang, S. J., Chen, R. Y., et al. Class integration test sequence determination method based on Particle Swarm Optimization algorithm [J]. Computer journal, 2018(4). [Google Scholar]
  10. Gu, Y. P., Zhao, W. J., Wu. Z. S., et al. Research on algorithm of Least Squares Support Vector Machine [J]. Journal of Tsinghua university: natural science edition, 2010(7):1063-1066. [Google Scholar]
  11. Suykens, Gestel J V, Brabanter T D, et al. Support Vector Machines: Least Squares Approaches and Extensions [J]. Advances in Learning Theory Methods Models & Applications Nato Science, 2003. [Google Scholar]
  12. Keerthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms [J]. Neural Networks IEEE Transactions on, 2002,13(5):1225-1229. [CrossRef] [Google Scholar]
  13. Chapelle O, Vapnik V, Bousquet O, et al. Choosing Multiple Parameters for Support Vector Machines [J]. Machine Learning, 2001,46(1-3):131-159. [CrossRef] [Google Scholar]
  14. Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks the Official Journal of the International Neural Network Society, 2004,17(1):113-126. [CrossRef] [PubMed] [Google Scholar]
  15. Rong, H. N., Zhang, G.X., Jin, W. D. Research on support Vector Machine Kernel function and its parameters in system Identification [J]. Journal of system Simulation, 2006,18(11):3204-3208. [Google Scholar]
  16. Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM parameters [J]. Neurocomputing, 2003,51(2):41-59. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.