Open Access
Issue
MATEC Web Conf.
Volume 245, 2018
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018)
Article Number 04001
Number of page(s) 6
Section Development of New Perspective Technological Products
DOI https://doi.org/10.1051/matecconf/201824504001
Published online 05 December 2018
  1. M. Inman, E.R. Thorhallsson, K. Azrague, A Mechanical and Environmental Assessment and Comparison of Basalt Fibre Reinforced Polymer (BFRP) Rebar andSteel Rebar in Concrete Beams, Energy Procedia. 111 (2017) 31–40. [CrossRef] [Google Scholar]
  2. J. Sim, M. Ju, K. Lee, Thirty Years Researches on Development for SustainableConcrete Technology, MATEC Web Conf. 138 (2017) 10. [Google Scholar]
  3. V.I. Travush, D.V. Konin, A.S. Krylov, Strength of composite steel and concrete beamsof high-performance concrete, Mag. Civ. Eng. 79 (3) (2018) 36–44. [Google Scholar]
  4. V.I. Travush, D.V. Konin, A.S. Krylov, Strength of reinforced concrete beams of high-performance concrete and fiber reinforced concrete, Mag. Civ. Eng. 77 (1) (2018) 90–100. [Google Scholar]
  5. A.I. Kirsanov, O.N. Stolyarov, Mechanical properties of synthetic fibers applied toconcrete reinforcement, Mag. Civ. Eng. 80 (4) (2018) 15–23. [Google Scholar]
  6. A.S. Rassokhin, A.N. Ponomarev, O.L. Figovsky, Silica fumes of different types for high-performance fine-grained concrete, Mag. Civ. Eng. 78 (2) (2018) 151–160. [Google Scholar]
  7. T.A. Nizina, A.N. Ponomarev, A.S. Balykov, D.I. Korovkin, Multicriteria optimisation of the formulation of modified fine-grained fibre concretes containing carbon nanostructures, Int. J. Nanotechnol. 15 (4–5) (2018) 333–346. [Google Scholar]
  8. R.B. Orlovich, V.V. Bespalov, V.N. Derkach, Compressed-bent masonry walls reinforced with composite materials, Mag. Civ. Eng. 79 (3) (2018) 112–119. [Google Scholar]
  9. A.R. Emparanza, R. Kampmann, F. De CasoBasalo, State-of-The-practice of frp rebar global manufacturing, in: CAMX 2017 Compos. Adv. Mater. Expo, 2017. [Google Scholar]
  10. A. Bahari, B. Nikoufar, FRP composites in fabrication, rehabilitation and strengthening of structure, in: Proc. 6th Int. Spec. Conf. Fibre Reinf. Mater., 2017: pp. 67–70. [Google Scholar]
  11. B. Benmokrane, A.H. Ali, Durability of FRP rebars in aggressive environments, in: Proc. 8th Int. Conf. Fibre-Reinforced Polym. Compos. Civ. Eng. CICE 2016, 2016: pp. 3–10. [Google Scholar]
  12. A. Rolland, M. Quiertant, A. Khadour, S. Chataigner, K. Benzarti, P. Argoul, Experimental investigations on the bond behavior between concrete and FRP reinforcing bars, Constr. Build. Mater. 173 (2018) 136–148. [CrossRef] [Google Scholar]
  13. V.G. Khozin, A.R. Gizdatullin, Collaboration of polymer composite reinforcement and cement concrete, in: J. Phys. Conf. Ser., 2018. [Google Scholar]
  14. V.K.R. Kodur, P.P. Bhatt, A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire, Compos. Struct. 187 (2018) 226–240. [CrossRef] [Google Scholar]
  15. M.H. Jamalan, D.F. Fu, Numerical Analysis on Bond Strength of FRP Re-bars under Elevated Temperature, IOP Conf. Ser. Mater. Sci. Eng. 371 (2018) 12–13. [CrossRef] [Google Scholar]
  16. F.M. Özkal, M. Polat, M. Yağan, M.O. Öztürk, Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures, Constr. Build. Mater. 184 (2018) 45–57. [CrossRef] [Google Scholar]
  17. G. Li, J. Zhao, Z. Wang, Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure, Materials (Basel). 11 (6) (2018) 10–28. [Google Scholar]
  18. R.J.A. Hamad, M.A. Megat Johari, R.H. Haddad, Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures, Constr. Build. Mater. 142 (2017) 521–535. [CrossRef] [Google Scholar]
  19. F. O.L. Kudryavtsev P.G., Heat-resistant inorganic binders, Nanotechnologies Constr. 9 (2) (2017) 66–81. [Google Scholar]
  20. A.N. Ponomarev, M.E. Yudovitch, M.V. Gruzdev, V.M. Yudovitch, Teoretical Estimation of Topological Factor in Interaction of the Non-Metallic Nanoparticles with Electromagnetic Waves, J. Sci. Technol. Advantages. 11 (3) (2009) 20–26. [Google Scholar]
  21. A.I. Shames, E.A. Katz, A.M. Panich, D. Mogilyansky, E. Mogilko, J. Grinblat, V.P. Belousov, I.M. Belousova, A.N. Ponomarev, Structural and magnetic resonance study of astralen nanoparticles, Diam. Relat. Mater. 18 (2–3) (2009) 505–510. [CrossRef] [Google Scholar]
  22. A.I. Shames, I. Felner, V.Y. Osipov, E.A. Katz, E. Mogilko, J. Grinblat, A.M. Panich, V.P. Belousov, I.M. Belousova, A.N. Ponomarev, Closed п-Electron Network in Large Polyhedral Multi-Shell Carbon Nanoparticles, Nanosci. Nanotechnol. Lett. 3 (2011) 41–48. [CrossRef] [Google Scholar]
  23. Gravit, M.V., Nedryshkin, O.V., Ogidan, O.T. Mag. Civ. Eng. 77 (1), pp. 38-46. (2018) [Google Scholar]
  24. A.V. Bushmanova, D.K. Kharchenko, K.S. Semenov, Yu.G. Barabanshchikov, V.K. Korovina, A.V. Dernakova, Mag. Civ. Eng., 79 (3), pp. 45-53. (2018) [Google Scholar]
  25. Alexander, B., Vladislav, B., Journal of Physical Education and Sport (2016) [Google Scholar]
  26. A.B. Elakov, R.A. Turusov, E.A. Bogachev, A.Yu. Sergeev. St. Petersburg polytechnic university journal of engineering science and technology, 24(02), 149–160 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.