Open Access
Issue
MATEC Web Conf.
Volume 244, 2018
Innovative Technologies in Engineering Production (ITEP’18)
Article Number 02001
Number of page(s) 9
Section Development Trends in Machining Technology
DOI https://doi.org/10.1051/matecconf/201824402001
Published online 05 December 2018
  1. M. Zieleniewska, M.K. Leszczynski, L. Szczepkowski, A. Bryskiewicz, M. Krzyzowska, K. Bien, J. Ryszkowska, Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polymer Degradation and Stability, vol.132, 78-86 (2016) [CrossRef] [Google Scholar]
  2. D.A. Oliveira, P. Benelli, E.R. Amante, A literature review on adding value to solid residues: egg shells. Journal of Cleaner Production, vol. 46, 42-47 (2013) [CrossRef] [Google Scholar]
  3. J.M. Badanoa, C. Betti, I. Rintoulb, J. Vich-Berlanga, E. Cagnola, G. Torres, C. Vera, J. Yori, M. Quiroga, New composite materials as support for selective hydrogenation; egg-shell catalysts. Applied Catalysis A: General 390, 166-174 (2010) [CrossRef] [Google Scholar]
  4. A. Ruggiero, P. Valášek, M. Müller, Exploitation of waste date seeds Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Composites: Part B, vol. 104, 9-16 (2016) [CrossRef] [Google Scholar]
  5. Č. Mizera, D. Herák, P. Hrabě, M. Müller, A. Kabutey, Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. Journal of Natural Fibers, vol. 14, 287-296 (2017) [CrossRef] [Google Scholar]
  6. G. Koronis, A. Silva, M. Fontul, Green composites. A review of adequate materials for automotive applications. Composites: Part B, vol. 44, 120-127 (2013) [CrossRef] [Google Scholar]
  7. C.A. Kakou, F.Z. Arrakhiz, A. Trokourey, R. Bouhfid, A. Qaiss, D. Rodrigue, Influence of coupling agent content on the properties of high density polyethylene composites reinforced with oil palm fibers. Materials and Design, vol. 63, 641-649 (2014) [CrossRef] [Google Scholar]
  8. X. Lu, M. Qiu Zhang, M. Zhi Rong, G. Shi, G. Cheng Yang, Melt processable composites of sisal. Composites Science and Technology, vol. 63, 177-186 (2003) [CrossRef] [Google Scholar]
  9. X. Zhao, R. Li, S-L. Bai, Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process. Composites: Part A, vol. 65, 169-174 (2014) [CrossRef] [Google Scholar]
  10. A.S. Doumbia, M. Castro, D. Jouannet, A. Kervoëlen, T. Falher, L. Cauret, A. Bourmaud Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters. Materials and Design, vol. 87, 331-341 (2015) [CrossRef] [Google Scholar]
  11. A.A. Nasir Abdul, A.I. Azmi, A.N.M. Khalil Measurement and optimisation of residual tensile strength and delamination damage of drilled flax fibre reinforced composites. Measurement, vol. 75, 298-307 (2015) [CrossRef] [Google Scholar]
  12. M.P. Ho, H. Wang, J.H. Lee, C.K. Ho, K.T. Lau, J. Leng, D. Hui Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, vol. 43, 3549-3562 (2012) [CrossRef] [Google Scholar]
  13. H-Y. Cheung, M-P. Ho., K-T. Lau, F. Cardona, D. Hui. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites: Part B, vol. 40, 655-663 (2009) [CrossRef] [Google Scholar]
  14. K.A. Iyer, J.M Torkelson Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Composites Science and Technology, vol. 102, 152-160 (2014) [CrossRef] [Google Scholar]
  15. M. Müller, P. Valášek Research on aluminium alloy alcu4mg surface machined by abrasive water jet. Manufacturing technology, vol. 17, 925-930 (2017) [Google Scholar]
  16. M. Müller, R. D’Amato, A. Rudawska Machining of polymeric composites by means of abrasive water-jet technology. In 16th international scientific conference: engineering for rural development 24.05.2017, Latvia univ agr, fac engn, Jelgava, Latvia. Jelgava, Latvia: Latvia univ agriculture, Faculty engineering, inst mechanics, 5 j cakstes blvd, Jelgava, lv-3001, Latvia, 121-127 (2017) [Google Scholar]
  17. M. Kušnerová, J. Foldyna, L. Sitek, J. Valicek, S. Hloch, M. Harnicarova, M. Kadnar Innovative approach to advanced modulated waterjet technology. Technicki Vjesnik-Technical Gazette, vol. 19 (3), 475-480 (2012) [Google Scholar]
  18. S. Hloch, J. Hlavacek, K. Vasilko, J. Carach, I. Samardzic, D. Kozak, I. Hlavaty, J.J. Scucka, Klich, D. Klichava Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija, vol. 53(4), 537-540 (2014) [Google Scholar]
  19. J. Wang, D.M. Guo A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. Journal of Materials Processing Technology, vol. 121, 390-394 (2002) [CrossRef] [Google Scholar]
  20. D.K. Shanmugam, T. Nguyen, J.A. Wang Study of delamination on graphite/epoxy composites in abrasive waterjet machining. Composites: Part A, vol. 39, 923-929 (2008) [CrossRef] [Google Scholar]
  21. D.K. Shanmugam, F.L. Chen, E. Siores, M. Brandt Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Composite Structures, vol. 57, 289-296 (2002) [CrossRef] [Google Scholar]
  22. M. Hashish A model study of metal cutting with abrasive water jet. In: ASME Journal of Engineering Materials and Technology, vol. 106, 88-100 (1984) [CrossRef] [Google Scholar]
  23. E. Lemma, F.L. Chen, E. Siores, J. Wang Study of cutting fiber reinforced composites by using abrasive waterjet with cutting head oscillation. Composite Structure, vol. 57, 297-303 (2002) [CrossRef] [EDP Sciences] [Google Scholar]
  24. J. Wang Abrasive waterjet machining of polymer matrix composites-cutting performance, erosive process and predictive models. Int J Adv Manuf Technol., vol. 15, 757-768 (1999) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.