Open Access
Issue
MATEC Web Conf.
Volume 241, 2018
International Conference on Structural Nonlinear Dynamics and Diagnosis (CSNDD 2018)
Article Number 01012
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/201824101012
Published online 03 December 2018
  1. Wordld Health Organization HIV/AIDS facts, http://www.who.int/mediacentre/factsheets/ fs360/en/index.html,accessed July (2017). [Google Scholar]
  2. M.A. Chesney, J. Ickovics, F.M. Hecht, G. Sikipa, J. Rabkin, Adherence: a necessity for successful HIV combination therapy, AIDS (London, England).13 (1999) 271–8. [CrossRef] [Google Scholar]
  3. S. Pankavich, The Effects of Latent Infection on the Dynamics of HIV, Differential Equations and Dynamical Systems. 24 (2016) 281–303. [CrossRef] [Google Scholar]
  4. L. Rong, M.A. Gilchrist, Z. Feng, A.S. Perelson, Modeling within-host HIV1 dynamics and the evolution of drug resistance: tradeoffs between viral enzyme function and drug susceptibility, Journal of Theoretical Biology. 247 (2007) 804–818. [CrossRef] [Google Scholar]
  5. L. Rong, A.S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Mathematical biociences. 217 (2009) 77–87. [CrossRef] [Google Scholar]
  6. B. Buonomo, C. Vargas-De-Leon, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, Journal of Mathematical Analysis and Applications. 285 (2012) 709–720. [CrossRef] [Google Scholar]
  7. Y. Wang, Y. Zhou, J. Wu, J. Heffernan, Oscillatory viral dyanamics in a delayed HIV pathogenesis model, Mathematical biociences. 209 (2009) 104–112. [CrossRef] [Google Scholar]
  8. L. Wang, M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Mathematical biociences. 200 (2006) 44–57. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. Q. Sun, L. Min, Y. Kuang, Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model, IST systems biology. 9 (2015) 95–103. [CrossRef] [Google Scholar]
  10. S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics. 2 (2008) 140–153. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.