Open Access
Issue
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
Article Number 02086
Number of page(s) 6
Section Session 2 : Structures & Stability
DOI https://doi.org/10.1051/matecconf/201814902086
Published online 14 February 2018
  1. Hambley D F, Backfill Mining. In: Darling P, editor. Mining Engineering Handbook, 3rd ed. USA, Society for Mining, Metallurgy, and Exploration, pp. 1375-1384 (2011). [Google Scholar]
  2. Marston A. The theory of external loads on closed conduits in the light of latest experiments. Bulletin 96, Iowa Engineering Experiment Station, Ames Iowa (1930). [Google Scholar]
  3. Terzaghi K, Theoretical soil mechanics. New York: John Wiley & Sons (1943). [CrossRef] [Google Scholar]
  4. Stone DMR., The optimization of mix designs for cemented rock fill. In: Glen H W, editor. MINEFILL’93 – The 5th International Symposium on Mining with Backfill. Johannesburg, South Africa, SAIMM, pp. 249-253 (1993). [Google Scholar]
  5. Winch C, Geotechnical characteristics and stability of paste backfill at BHP Cannington mine. PhD, James Cook University, Townsville, Australia (1999). [Google Scholar]
  6. Aubertin M, Li L, Arnoldi S, Belem T, Bussière B, Benzaazoua M, Simon R., Interaction between backfill and rock mass in narrow stopes. In: Culligan PJ, Einstein HH, Whittle AJ (eds) Soil and rock america, vol 1. Verlag Glückauf Essen (VGE), Essen, pp 1157–1164 (2003). [Google Scholar]
  7. Li L, Aubertin M, Belem T, Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings. Can Geotech J 42: 1705–1717 (2005). [CrossRef] [Google Scholar]
  8. Pirapakaran K, Sivakugan N., Arching within Hydraulic Fill Stopes. Geotech Geol Eng 25: 25-35. [Google Scholar]
  9. Mitchell RJ, Olsen RS, Smith JD 1982. Model studies on cemented tailings used in mine backfill. Can Geotech J 19: 14–28 (2007). [CrossRef] [Google Scholar]
  10. Zou S, Nadarajah N, Optimizing backfill design for ground support and cost saving. In: Yale D P, editor. The 41st US symposium on rock mechanics USRMS) Golden: American Rock Mechanics Association, Colorado, USA, p. 7–21 (2006). [Google Scholar]
  11. Li, L., and Aubertin, M. A modified solution to assess the required strength of exposed backfill in mine stopes. Canadian Geotechnical Journal, 49 (8):994–1002 (2012). [CrossRef] [Google Scholar]
  12. Li L, Aubertin M, An improved method to assess the required strength of cemented backfill in underground stopes with an open face. Int J Min Sci Technol 24: 549–558 (2014). [CrossRef] [Google Scholar]
  13. Becker DE, Moore ID, Canadian Manual of Foundation Engineering. 4th ed. Canada: Canadian Geotechnical Society (2006). [Google Scholar]
  14. Kumar, S, Design of Pile Foundations, in: Braja M. Das. (Ed.) Geotechnical Engineering Handbook, J. Ross Publishing, Floride, pp. 189-258 (2010). [Google Scholar]
  15. Yu T R, Mechanisms of Fill Failure and Fill Strength Requirements. In: Canadian Association of Rock Mechanics, editor. The 6th Canadian Rock Mechanics Symposium, Sudbury, Canada, pp. 1-6 (1992). [Google Scholar]
  16. Hassani F, Bois D, Economic and technical feasibility for backfill design in Quebec underground mines Final report 1/2, Canada-Quebec Mineral Development Agreement, Research & Development in Quebec Mines Contract no EADM 1989-1992, File no 71226002 (1992). [Google Scholar]
  17. Craig RF, Craig’s Soil Mechanics. In: Craig RF, editor. Bearing capacity. 7th ed. London, Spon Press, Taylor & Francis, pp. 294-295 (2004). [Google Scholar]
  18. European Committee for Standardization, Eurocode 7, Geotechnical Design – Part 1: General Rules, Brussels: European Committee for Standardization (2004). [Google Scholar]
  19. Mitchell R J, Sill mat evaluation using centrifuge models, Mining Science and Technology 13: 301-313 (1991). [CrossRef] [Google Scholar]
  20. Mott, R, Applied strength of materials. Ontario: Prentice Hall (2002). [Google Scholar]
  21. Regal, X., Thèse de Doctorat, Caractérisation du comportement en traction du béton sous fortes sollicitations: essais de flexion trois points aux barres de Hopkinson. Autre. Universitée d’Orléans (2016). [Google Scholar]
  22. Clark CC, Vickery JD, Backer RR, Transport of total tailings paste backfill: results of full-scale pipe test loop pumping tests, report of investigation RI 9573. Washington, Spokane: National Institute for Occupational Safety and Health (1993). [Google Scholar]
  23. Belem T, Benzaazoua M, An overview on the use of paste backfill technology as a ground support method in cut-and-fill mines. In: The 5th Int Symp on Ground support in Mining and Underground Construction: Villaescusa E, Potvin Y. editors., Perth, Australia, pp. 637 – 650 (2004). [Google Scholar]
  24. Landriault D.A., Verburg R., Cincilla W. and Welch D, Paste technology for underground backfill and surface tailings disposal applications. Short course [Google Scholar]
  25. Benzaazoua M, Ouellet J, Servant, S, Newman P, Verburg R, Cementitious mine backfill with high sulfur content: physical, chemical and mineralogical characterization. Cem Concr Res 29: 719–725 (1999). [CrossRef] [Google Scholar]
  26. Hassani F., Archibald, J, Mine backfill Hand Book. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.