Open Access
Issue
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
Article Number 02065
Number of page(s) 5
Section Session 2 : Structures & Stability
DOI https://doi.org/10.1051/matecconf/201814902065
Published online 14 February 2018
  1. K.A. Saeed, K.A. Kassim, H. Nur., Physicochemical characterization of cement treated kaolin clay. Gradevinar, 66, 513-521 (2014). [Google Scholar]
  2. D. Castro-Fresno, D. Movilla-Quesada, A. Vega-Zamanillo, M.A. Calzada-Pérez., Lime stabilization of bentonite sludge for tunnel boring. Appl. Clay Sci. 51, 250–257 (2011). [CrossRef] [Google Scholar]
  3. M. Di Sante, E. Fratalocchi, F. Mazzieri, E. Pasqualini., Time of reaction in a lime treated clayey soil and influence of curing conditions on its microstructure and behaviour. Appl. Clay Sci. 99, 100–109 (2014). [CrossRef] [Google Scholar]
  4. S.Z. George, D.A. Ponniah, J.A. Little., Effect of temperature on lime-soil stabilization. Constr. Build. Mater. 6, 247–252 (1992). [CrossRef] [Google Scholar]
  5. S. Kolias, V. Kasselouri-Rigopoulou, A. Karahalios., Stabilization of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos. 27, 301–313 (2005). [CrossRef] [Google Scholar]
  6. A. Modarres, Y.M. Nosoudy., Clay stabilization using coal waste and lime-Technical and environmental impact. Appl. Clay Sci. 116-117, 281-288 (2015). [CrossRef] [Google Scholar]
  7. J.L Eades, R.E. Grim., Reactions of hydrated lime with pure clay minerals in soil stabilization. Highw. Res. Board Bull. 262, 51–53 (1960). [Google Scholar]
  8. E. Pomakhina, D. Deneele, A.C. Gaillot, M. Paris, G. Ouvrard., 29Si solid state NMR investigation of pozzolanic reaction occurring in lime treated Ca-bentonite. Cem. Concr. Res. 14, 626–632 (2012). [CrossRef] [Google Scholar]
  9. L. Dewindt, D. Deneele, N. Maubec., Kinetics of lime/bentonite pozzolanic reactions at 20 and 50°C: batch tests and modeling. Cem. Concr. Res. 59, 34-42 (2014). [CrossRef] [Google Scholar]
  10. Y.C. Chemeda, D. Deneele, G.E. Christidis, G. Ouvrard., Influence of hydrated lime on the surface properties and interaction of kaolinite particles. Appl. Clay Sci. 107, 1–13 (2015). [CrossRef] [Google Scholar]
  11. G. Russo, S. Dal Vecchio, G. Mascolo., Microstructure of a lime stabilised compacted Silt. In: Schanza, Dans In T. (Ed.), Experimental? Unsaturated Soil Mechanics. Springer, Berlin Heidelberg, pp. 49–56 (2007). [CrossRef] [Google Scholar]
  12. Z. Metelkova, J. Bohac, R. Prikryl, I. Sedlarova., Maturation of loess treated with variable lime admixture: pore space textural evolution and related phase changes. Appl. Clay Sci. 61, 37–43 (2012). [CrossRef] [Google Scholar]
  13. G. Russo, G. Modoni., Fabric changes induced by lime addition on a compacted alluvial soil. Geotechnique Lett. 3, 93–99 (2013). [Google Scholar]
  14. E. Vitale, D. Deneele, G. Russo., Multiscale analysis on the behaviour of a lime treated bentonite, VI Italian Conference of Researchers in Geotechnical Engineering-Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale, CNRIG2016. Procedia Eng. 158, 87–91(2016). [CrossRef] [Google Scholar]
  15. E. Vitale, D. Deneele, M. Paris, G. Russo., Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science, 141, 36–45 (2017). [CrossRef] [Google Scholar]
  16. M. Al Mukhtar, A. Lasledj, J.F, Alcover., Behavior and mineralogy changes in lime treated expansive soil at 20 °C. Applied Clay Science, 50, 191–198 (2010). [CrossRef] [Google Scholar]
  17. C.D. Rogers, S. Glendinning., Modification of clay soils using lime. In: CDF Rogers, Dans S.G. (Ed.), Lime Stabilisation. Thomas Telford, London, pp. 99–112 (1996). [Google Scholar]
  18. S. Leroueil, J.P Le Bihan., Liquid limits and falling cones. Can. Geotech. J. 33, 793–798 (1996). [CrossRef] [Google Scholar]
  19. J.K. Mitchell., Practical problems from surprising soil behaviour. J. Geotech. Eng., ASCE 112, 259–289 (1986). [CrossRef] [Google Scholar]
  20. J.B. Croft., The pozzolanic reactivates of some New South Wales fly ashes and their application to soil stabilization. Proc. ARRB, Australia 2, 144–167 (1964). [Google Scholar]
  21. O.G. Ingles, J.B. Metcalf., Soil Stabilisation: Principles and Practice. Butterworths, Sidney, Australia (1972). [Google Scholar]
  22. F.G. Bell., Lime stabilisation of clay minerals and soils. Eng. Geol. 42, 223–237 (1996). [Google Scholar]
  23. D.N. Little., Fundamentals of the Stabilization of Soil With Lime: National Lime Association. Bulletin vol. 332. Arlington, USA, pp. 1–20 (1996). [Google Scholar]
  24. R. James, A.H. Kamruzzaman, A. Haque, A. Wilkinson., Behaviour of lime-slag-treated clay. Proceedings of the ICE-Ground Improv. vol. 161 (4), pp. 207–216 (2008). [CrossRef] [Google Scholar]
  25. M. Khemissa, A. Mahamedi., Cement and lime mixture stabilization of an expansive overconsolidated clay. Appl. Clay Sci. 95, 104–110 (2014). [CrossRef] [Google Scholar]
  26. A.R. Goodarzi, M. Salimi., Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Appl. Clay Sci. 108, 61–69 (2015). [CrossRef] [Google Scholar]
  27. J.M. Kinuthia, S. Wild., Effects of some metal sulphates on the strength and swelling properties of lime-stabilised kaolinite. Int. J. Pavement Eng. 2 (2), 103–120 (2001). [CrossRef] [Google Scholar]
  28. R.W. Grimshaw., The Chemistry and Physics of Clays. Fourth Editing. Ernest Benn (1971). [Google Scholar]
  29. J. Locat, H. Tremblay, S. Leroueil., Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can. Geotech. J. 33 (4), 654–669 (1996). [CrossRef] [Google Scholar]
  30. P.V. Sivapullaiah, A. Sridharan, A.N. Ramesh., Strength behaviour of lime treated soils in the presence of sulphate. Can. Geotech. J. 37, 1358–1367 (2000). [CrossRef] [Google Scholar]
  31. H. Tremblay, S. Leroueil, J. Locat., Mechanical improvement and vertical yield stress prediction of clayey soil from eastern Canada treated with lime or cement. Can. Geotech. J. 38, 567–579 (2001). [CrossRef] [Google Scholar]
  32. S.M. Rao, P. Shivananda., Role of curing temperature in progress of lime-soil reactions. Geotech. Geol. Eng. 23 (1), 79–85 (2005). [CrossRef] [Google Scholar]
  33. ASTM D-4318., Standard test method for liquid limit, plastic limit and plasticity index of soils. Annual Book of ASTM Standards, vol. 04.08. Easton, PA: American Society for Testing and Materials (2000). [Google Scholar]
  34. J. Locat, H. Tremblay, S. Lerouil., “Mechanical and hydraulic behavior of a soft inorganic clay treated with lime”. Journal of Geotechnical 33, 654-669 (1966). [Google Scholar]
  35. S.H. Chew, A.H.M. Kamruzzaman, F.H. Lee, “Physicochemical and engineering behavior of cement treated clayey”. Journal of Geotechnical and Geo-Environmental Engineering 130, 696-706 (2004). [Google Scholar]
  36. R.C. Bates., Electrometric pH determination, John Wiley and sons Inc. New York (1954). [Google Scholar]
  37. B. Le Runigo, O. Cuisinier, Y.J. Cui, V. Ferber, D. Deneele., Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching. Canadian Geotechnical Journal, 46, 1243–1257 (2009). [Google Scholar]
  38. T. Umesha, S. Dinesh, P. Sivapullaiah., Control of dispersivity of soil using lime and cement. International Journal of Geology, 3, 8–16 (2009). [Google Scholar]
  39. J.C. Dong., Investigation of aggregates size effect on the stiffness of lime and/or cement treated soils: From laboratory to field conditions (Ph.D thesis). Université Paris Est, France (2013). [Google Scholar]
  40. S.A. Bourokba, A. Hachichi, H. Souli, S. Taibi, J.M. Fleureau., Effect of lime on some physical parameters of a natural expansive clay from Algeria, European Journal of Environmental and Civil Engineering (2015). [Google Scholar]
  41. J.L. Eades, R.E. Grim., A quick test to determine lime requirements for lime stabilization. Highw. Res 139: 61–72 (1966). [Google Scholar]
  42. J.M. Kinuthia, S. Wild, G.I. Jones., Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilized kaolinite. Appl. Clay Sci. 14, 27–45 (1999). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.