Open Access
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
Article Number 08002
Number of page(s) 5
Section Nonlinearity and Stochasticity in Vibrating Systems
Published online 02 February 2018
  1. Brzeski, P., Lazarek, M., Kapitaniak, T., Kurths, J., & Perlikowski, P. (2016). Basin stability approach for quantifying responses of multistable systems with parameters mismatch. Meccanica, 51(11), 2713-2726. [CrossRef] [Google Scholar]
  2. Blażejczyk-Okolewska, Barbara, and Tomasz Kapitaniak. "Co-existing attractors of impact oscillator." Chaos, Solitons & Fractals 9.8 (1998): 1439-1443. [CrossRef] [Google Scholar]
  3. Ing, James, et al. "Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing." Physica D: Nonlinear Phenomena 239.6 (2010): 312-321. [CrossRef] [Google Scholar]
  4. de Souza, Silvio LT, Iberê L. Caldas, and Ricardo L. Viana. "Multistability and self-similarity in the parameter-space of a vibro-impact system." Mathematical Problems in Engineering 2009 (2009). [Google Scholar]
  5. Wiercigroch, Marian, Anton M. Krivtsov, and Jerzy Wojewoda. "Vibrational energy transfer via modulated impacts for percussive drilling." Journal of Theoretical and Applied Mechanics 46.3 (2008): 715-726. [Google Scholar]
  6. Jerrelind, Jenny, and Harry Dankowicz. "A global control strategy for effcient control of a Braille impact hammer." Journal of vibration and acoustics 128.2 (2006): 184-189. [CrossRef] [Google Scholar]
  7. K.-C. Woo, A. A. Rodger, R. D. Neilson, and M. Wiercigroch, “Application of the harmonic balance method to ground moling machines operating in periodic regimes,” Chaos, Solitons & Fractals, vol. 11, no. 13, pp. 2515-2525, 2000. [CrossRef] [Google Scholar]
  8. Venkatramani, J., et al. "Precursors to flutter instability by an intermittency route: A model free approach." Journal of Fluids and Structures 61 (2016): 376-391. [CrossRef] [Google Scholar]
  9. Suda, Narasimha, and Soumitro Banerjee. "Why does narrow band chaos in impact oscillators disappear over a range of frequencies?." Nonlinear Dynamics 86.3 (2016): 2017-2022. [CrossRef] [Google Scholar]
  10. Figueroa, Leonardo E., and Endre Suli. "Greedy approximation of high-dimensional Ornstein.Uhlenbeck operators." Foundations of Computational Mathematics 12.5 (2012): 573-623. [CrossRef] [MathSciNet] [Google Scholar]
  11. Simpson, David JW, Stephen John Hogan, and Rachel Kuske. "Stochastic regular grazing bifurcations." SIAM Journal on Applied Dynamical Systems 12.2 (2013): 533-559. [CrossRef] [Google Scholar]
  12. de Souza, Silvio LT, et al. "Noise-induced basin hopping in a vibro-impact system." Chaos, Solitons & Fractals 32.2 (2007): 758-767. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.