Open Access
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
Article Number 07001
Number of page(s) 6
Section Vibration of Beams, Plates and Shells, from Nano to Macro
Published online 02 February 2018
  1. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill Book Company, New York, 1959)
  2. V.V. Novozhilov, The Theory of Thin Elastic Shells (P. Noordhoff, Gromingen, The Netherlands, 1964) [CrossRef]
  3. W. Flügge, “Statik and Dynamik der Schalen” (Statics and dynamics of shells) (Springer-Verlag, Berlin, 1934)
  4. A.L. Goldenveizer, Theory of Thin Shells (Pergamon Press, Elmsford, New York, 1961)
  5. V.Z. Vlasov, General Theory of Shells and Its Applications in Engineering (translation from Russian) (NASA TTF-99, U.S. Governmental Printing Office, Washington, D.C., 1964)
  6. J.E. Gibson, Linear Elastic Theory of Thin Shells (Pergamon Press, London, 1965)
  7. L.H. Donnell, Beams, Plates, and Shells (McGraw-Hill, New York, 1976)
  8. A.W. Leissa, Vibrations of Shells (NASA SP-288, U.S. Government Printing Office, Washington, D.C., 1973)
  9. W. Soedel, Vibrations of Shells and Plates, 3rd edition, revised and expanded (Marcel Dekker Inc., New York, 2004)
  10. I. Senjanović, Theory of Shells of Revolution (Ship Research Institute, Zagreb, 1972)
  11. C.T.F. Ross, Pressure Vessels Under External Pressure: Statics and Dynamics (Elsevier Applied Science, London, 1990)
  12. Group of Authors, in E.E. Allmenidinger, (Ed.), Submersible Vehicle System Design (SNAME, Jersey City, 1990)
  13. G. Herrmann. A.E. Armenakas, Dynamic Behavior of Cylindrical Shells under Initial Stress, Proc. 4th U.S. Nat. Congr. Appl. Mech, ASME, 203-213, (1962)
  14. G.H. Bryan, On the beats in the vibrations of a revolving cylinder or bell. In: Proc. of the Camb. Philos. Soc., 101–111 (1880)
  15. R.A. Di Taranto, M. Lessen, Coriolis Acceleration Effect on the Vibration of a Rotating Thin-Walled Circular Cylinder, J. Appl. Mech. 31, 700-701 (1964) [CrossRef]
  16. A.V. Srinivasan, G.F. Lauterbach, Traveling Waves in Rotating Cylindrical Shells, J. Eng. Ind. ASME 93, 1229-1232 (1971) [CrossRef]
  17. A. Zohar, J. Aboudi, The free vibrations of a thin circular finite rotating cylinder, Int. J. Mech. Sci. 15, 269–278 (1973) [CrossRef]
  18. T. Saito, M. Endo, Vibration of finite length, rotating cylindrical shells, J. Sound Vib. 107, 17–28 (1986) [CrossRef]
  19. M. Endo, K. Hatamura, M. Sakata, O. Taniguchi, Flexural vibration of a thin rotating ring, J. Sound Vib. 92, 261–272 (1984) [CrossRef]
  20. J. Padovan, Natural frequencies of rotating prestressed cylinders. J. Sound Vib, 31, 469–482 (1973) [CrossRef]
  21. S.C. Huang, W. Soedel, On the forced vibration of simply supported rotating cylindrical shells, J. Acoust. Soc. Am. 84(1), 275-285 (1988) [CrossRef]
  22. C. Gonzalez Diaz, P. Kindt, J. Middelberg, S. Vercammen, C. Thiry, R. Close, J. Leyssens, Dynamic behaviour of a rolling tyre: Experimental and numerical analyses, J. Sound Vib. 364, 147–164 (2016) [CrossRef]
  23. J. Lee, S. Wang, P. Kindt, B. Pluymers, W. Desmet, Identification of the direction and value of the wave length of each mode for a rotating tire using the phase difference method, Mech. Sys. and Signal Process. 68-69, 292–301 (2016) [CrossRef]
  24. P. Kindt, C. G. Diaz, S. Vercammen, C. Thiry, J. Middelberg, B. Kimble, J. Leyssens, Effects of rotation on the tire dynamic behavior: Experimental and numerical analyses, Tire Sci. and Tec. 41(4), 248-261 (2013)
  25. W.R. Graham, Modelling the vibration of tyre sidewalls, J. Sound Vib. 332(21), 5345–5374 (2013) [CrossRef]
  26. C. Lecomte, W.R. Graham, M. Dale, A shell model for tyre belt vibrations, J. Sound Vib. 329(10), 1717–1742 (2010) [CrossRef]
  27. Y.-J. Kim, JS. Bolton, Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration. J. Sound Vib. 275, 605–621 (2004) [CrossRef]
  28. L.R, Molisani, R.A. Burdisso, D. Tsihlas, A coupled tire structure/acoustic cavity model. Int. J. Solids Struct. 40, 5125–5138 (2003) [CrossRef]
  29. K. Forsberg, Influence of boundary conditions on the modal characteristics of thin cylindrical shells, AIAA J. 2(12), 2150-2157 (1964) [CrossRef]
  30. V.I. Weingarten, On the free vibration of thin cylindrical shells (Aerospace corporation, Systems research and planning division, Report No. TDR.169(3560.30)TN-3, El Segundo, California, 1962)
  31. G.B. Warburton, Vibration of thin cylindrical shells, J. Mech. Eng. Sci. 7(4), 399-407 (1965) [CrossRef]
  32. H. Chung, Free vibration analysis of circular cylindrical shells, J. Sound Vib. 74, 331–350 (1981) [CrossRef]
  33. S. Sun, S. Chu, D. Cao, Vibration characteristics of thin rotating cylindrical shells with various boundary conditions, J. Sound Vib. 331, 4170–4186 (2012) [CrossRef]
  34. S. Sun, D. Cao, Q. Han, Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method, Int. J. of Mec. Sci. 68, 180–189 (2013) [CrossRef]
  35. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, Analytical solution for free vibrations of rotating cylindrical shells having free boundary conditions. Eng. Str. 132, 152-171 (2017) [CrossRef]
  36. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, A simplified tire model based on a rotating shell, Proceedings of the 4th International Tyre Colloquium, University of Surrey, Surrey (2015)
  37. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, A simplified model of a rotating tire using cylindrical shells with free ends supported by an elastic foundation, Proceedings of ISMA2014, Katholieke Universiteit Leuven, Leuven (2014)
  38. Y.K. Cheung, Finite Strip Method in Structural Analysis (Pergamon Press, Oxford, 1976)
  39. I. Senjanović, I. Ćatipović, N. Alujević, N. Vladimir, D. Ćakmak, A finite strip for the vibration analysis of rotating cylindrical shells, Thin-Wall. Struct. (accepted).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.