Open Access
Issue
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
Article Number 07001
Number of page(s) 6
Section Vibration of Beams, Plates and Shells, from Nano to Macro
DOI https://doi.org/10.1051/matecconf/201814807001
Published online 02 February 2018
  1. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill Book Company, New York, 1959) [Google Scholar]
  2. V.V. Novozhilov, The Theory of Thin Elastic Shells (P. Noordhoff, Gromingen, The Netherlands, 1964) [CrossRef] [Google Scholar]
  3. W. Flügge, “Statik and Dynamik der Schalen” (Statics and dynamics of shells) (Springer-Verlag, Berlin, 1934) [Google Scholar]
  4. A.L. Goldenveizer, Theory of Thin Shells (Pergamon Press, Elmsford, New York, 1961) [Google Scholar]
  5. V.Z. Vlasov, General Theory of Shells and Its Applications in Engineering (translation from Russian) (NASA TTF-99, U.S. Governmental Printing Office, Washington, D.C., 1964) [Google Scholar]
  6. J.E. Gibson, Linear Elastic Theory of Thin Shells (Pergamon Press, London, 1965) [Google Scholar]
  7. L.H. Donnell, Beams, Plates, and Shells (McGraw-Hill, New York, 1976) [Google Scholar]
  8. A.W. Leissa, Vibrations of Shells (NASA SP-288, U.S. Government Printing Office, Washington, D.C., 1973) [Google Scholar]
  9. W. Soedel, Vibrations of Shells and Plates, 3rd edition, revised and expanded (Marcel Dekker Inc., New York, 2004) [Google Scholar]
  10. I. Senjanović, Theory of Shells of Revolution (Ship Research Institute, Zagreb, 1972) [Google Scholar]
  11. C.T.F. Ross, Pressure Vessels Under External Pressure: Statics and Dynamics (Elsevier Applied Science, London, 1990) [Google Scholar]
  12. Group of Authors, in E.E. Allmenidinger, (Ed.), Submersible Vehicle System Design (SNAME, Jersey City, 1990) [Google Scholar]
  13. G. Herrmann. A.E. Armenakas, Dynamic Behavior of Cylindrical Shells under Initial Stress, Proc. 4th U.S. Nat. Congr. Appl. Mech, ASME, 203-213, (1962) [Google Scholar]
  14. G.H. Bryan, On the beats in the vibrations of a revolving cylinder or bell. In: Proc. of the Camb. Philos. Soc., 101–111 (1880) [Google Scholar]
  15. R.A. Di Taranto, M. Lessen, Coriolis Acceleration Effect on the Vibration of a Rotating Thin-Walled Circular Cylinder, J. Appl. Mech. 31, 700-701 (1964) [CrossRef] [Google Scholar]
  16. A.V. Srinivasan, G.F. Lauterbach, Traveling Waves in Rotating Cylindrical Shells, J. Eng. Ind. ASME 93, 1229-1232 (1971) [CrossRef] [Google Scholar]
  17. A. Zohar, J. Aboudi, The free vibrations of a thin circular finite rotating cylinder, Int. J. Mech. Sci. 15, 269–278 (1973) [CrossRef] [Google Scholar]
  18. T. Saito, M. Endo, Vibration of finite length, rotating cylindrical shells, J. Sound Vib. 107, 17–28 (1986) [CrossRef] [Google Scholar]
  19. M. Endo, K. Hatamura, M. Sakata, O. Taniguchi, Flexural vibration of a thin rotating ring, J. Sound Vib. 92, 261–272 (1984) [CrossRef] [Google Scholar]
  20. J. Padovan, Natural frequencies of rotating prestressed cylinders. J. Sound Vib, 31, 469–482 (1973) [CrossRef] [Google Scholar]
  21. S.C. Huang, W. Soedel, On the forced vibration of simply supported rotating cylindrical shells, J. Acoust. Soc. Am. 84(1), 275-285 (1988) [CrossRef] [Google Scholar]
  22. C. Gonzalez Diaz, P. Kindt, J. Middelberg, S. Vercammen, C. Thiry, R. Close, J. Leyssens, Dynamic behaviour of a rolling tyre: Experimental and numerical analyses, J. Sound Vib. 364, 147–164 (2016) [CrossRef] [Google Scholar]
  23. J. Lee, S. Wang, P. Kindt, B. Pluymers, W. Desmet, Identification of the direction and value of the wave length of each mode for a rotating tire using the phase difference method, Mech. Sys. and Signal Process. 68-69, 292–301 (2016) [CrossRef] [Google Scholar]
  24. P. Kindt, C. G. Diaz, S. Vercammen, C. Thiry, J. Middelberg, B. Kimble, J. Leyssens, Effects of rotation on the tire dynamic behavior: Experimental and numerical analyses, Tire Sci. and Tec. 41(4), 248-261 (2013) [Google Scholar]
  25. W.R. Graham, Modelling the vibration of tyre sidewalls, J. Sound Vib. 332(21), 5345–5374 (2013) [CrossRef] [Google Scholar]
  26. C. Lecomte, W.R. Graham, M. Dale, A shell model for tyre belt vibrations, J. Sound Vib. 329(10), 1717–1742 (2010) [CrossRef] [Google Scholar]
  27. Y.-J. Kim, JS. Bolton, Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration. J. Sound Vib. 275, 605–621 (2004) [CrossRef] [Google Scholar]
  28. L.R, Molisani, R.A. Burdisso, D. Tsihlas, A coupled tire structure/acoustic cavity model. Int. J. Solids Struct. 40, 5125–5138 (2003) [CrossRef] [Google Scholar]
  29. K. Forsberg, Influence of boundary conditions on the modal characteristics of thin cylindrical shells, AIAA J. 2(12), 2150-2157 (1964) [CrossRef] [Google Scholar]
  30. V.I. Weingarten, On the free vibration of thin cylindrical shells (Aerospace corporation, Systems research and planning division, Report No. TDR.169(3560.30)TN-3, El Segundo, California, 1962) [Google Scholar]
  31. G.B. Warburton, Vibration of thin cylindrical shells, J. Mech. Eng. Sci. 7(4), 399-407 (1965) [CrossRef] [Google Scholar]
  32. H. Chung, Free vibration analysis of circular cylindrical shells, J. Sound Vib. 74, 331–350 (1981) [CrossRef] [Google Scholar]
  33. S. Sun, S. Chu, D. Cao, Vibration characteristics of thin rotating cylindrical shells with various boundary conditions, J. Sound Vib. 331, 4170–4186 (2012) [CrossRef] [Google Scholar]
  34. S. Sun, D. Cao, Q. Han, Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method, Int. J. of Mec. Sci. 68, 180–189 (2013) [CrossRef] [Google Scholar]
  35. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, Analytical solution for free vibrations of rotating cylindrical shells having free boundary conditions. Eng. Str. 132, 152-171 (2017) [CrossRef] [Google Scholar]
  36. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, A simplified tire model based on a rotating shell, Proceedings of the 4th International Tyre Colloquium, University of Surrey, Surrey (2015) [Google Scholar]
  37. N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, A simplified model of a rotating tire using cylindrical shells with free ends supported by an elastic foundation, Proceedings of ISMA2014, Katholieke Universiteit Leuven, Leuven (2014) [Google Scholar]
  38. Y.K. Cheung, Finite Strip Method in Structural Analysis (Pergamon Press, Oxford, 1976) [Google Scholar]
  39. I. Senjanović, I. Ćatipović, N. Alujević, N. Vladimir, D. Ćakmak, A finite strip for the vibration analysis of rotating cylindrical shells, Thin-Wall. Struct. (accepted). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.