Open Access
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
Article Number 04005
Number of page(s) 6
Section Modelling, Methodologies and Engineering Applications of Nonlinear Dynamical Systems
Published online 02 February 2018
  1. Y. Zhang, S. Jiang, X. Zhang, X. Ruan, D. Guo, A variable-diameter capsule robot based on multiple wedge effects, IEEE/ASME Trans. Mechatron. 16 (2011) 241–254, DOI: 10.1109/TMECH.2009.2039942; [CrossRef] [Google Scholar]
  2. A. Shukla and H. Karki, Application of robotics in onshore oil and gas industry – a review Part I, Robot. Auton. Syst. 75, 490-507, (2016) DOI:10.1016/j.robot.2015.09.012. [CrossRef] [Google Scholar]
  3. A. Shukla and H. Karki, Application of robotics in onshore oil and gas industry – a review Part II, Robot. Auton. Syst. 75, pp508-524, (2016) DOI:10.1016/j.robot.2015.09.013. [CrossRef] [Google Scholar]
  4. J. Warminski, S. Lenci, M.P. Cartmell, G. Rega, M. Wiercigroch, Nonlinear Dynamic Phenomena in Mechanics,Vol 181; Chapter 5:Engineering Applications of Non-smooth Dyn., Springer, pp. 211-273, (2012) DOI:10.1007/978-94-007-2473-0_5; [Google Scholar]
  5. E. Pavlovskaia, M. Wiercigroch, K.C. Woo and A.A. Rodger, Modelling of Ground Moling Dynamics by an Impact Oscillator with a Frictional Slider, Meccanica 38 (1), pp85–97, (2003), DOI:10.1023/A:1022023502199; [CrossRef] [Google Scholar]
  6. V.D. Nguyen, K.C. Woo and E. Pavlovskaia, Experimental study and Mathematical Modelling of a New of Vibro-impact moling device, Int. J. Nonlinear. Mech. 43 (6), pp542-550, (2008) DOI:10.1016/j.ijnonlinmec.2007.10.003; [CrossRef] [Google Scholar]
  7. L. Liu, S. Towfighian and A. Hila, A review of locomotion systems for capsule endoscopy, IEEE Reviews in Biomedical Engineering (2015), DOI:10.1109/RBME.2015.2451031; [Google Scholar]
  8. N. A. Sobolev and K. S. Sorokin, Experimental Investigation of a Model of a Vibration-Driven Robot with Rotating Masses, J. Comput. Sys. Sc. Int. 46(5), pp826–835, (2007); DOI:10.1134/S1064230707050140; [CrossRef] [Google Scholar]
  9. Y. Liu, M. Wiercigroch, E. Pavlovskaia and H. Yu, Modeling of a vibro-impact capsule system, Int. J. Mech. Sci., 66, 2–11 (2013), DOI:10.1016/j.ijmecsci.2012.09.012; [CrossRef] [Google Scholar]
  10. H. Li, K. Furuta and F. L. Chernous'ko, Motion Generation of the Capsubot Using Internal Force and Static Friction; Proceedings of the 45th IEEE Conference on Decision & Control, pp6575-6580, (2006) DOI: 10.1109/CDC.2006.377472; [CrossRef] [Google Scholar]
  11. F.L. Chernous'ko, The optimal periodic motions of a two-mass system in a resistant medium, J. Appl. Math. Mech. 72, pp 116–125, (2008) DOI:10.1016/j.jappmathmech.2008.04.014. [CrossRef] [Google Scholar]
  12. N.N. Bolotnik, T. Figurina, Optimal control of the rectilinear motion of a rigid body on a rough plane by means of the motion of two internal masses, J. Appl. Math. Mech. 72, pp126–135, (2008) DOI:10.1016/j.jappmathmech.2008.04.013; [CrossRef] [Google Scholar]
  13. N.N. Bolotnik, F.L. Chernous'ko, T. Figurina, Optimal Control of a Two-body Vibration-driven Locomotion System in a Resistive Environment, IFAC-PapersOnLine 48-25 (2015) 091–096, DOI:10.1016/j.ifacol.2015.11.065; [CrossRef] [Google Scholar]
  14. P. Vartholomeos and E. Papadopoulos, Dynamics, Design and Simulation of a Novel Microrobotic Platform Employing Vibration Microactuators, J. Dyn. Sys., Meas., Control 128(1), 122-133 (2005) DOI:10.1115/1.2168472; [CrossRef] [Google Scholar]
  15. G. Su, C. Zhang C, R. Tan and H. Li, A Design of the Electromagnetic Driver for the "Internal Force-Static Friction" Capsubot, International Conference on Intelligent Robots and Systems, (IEEE/RSJ 2009), DOI: 10.1109/IROS.2009.5354587; [Google Scholar]
  16. M.N. Huda, H.N. Yu and S.O. Wane, Self-contained Capsubot Propulsion Mechanism, International Journal of Automation and Computing, 8(3), 348-356, (2011), DOI: 10.1007/s11633-011-0591-3; [CrossRef] [Google Scholar]
  17. Y. Liu, H. Yu and S. Cang, Modelling and motion control of a double-pendulum driven cart, Proc. IMechE Vol. 226 Part I: J. Systems and Control Engineering, 226 No. 2 175-187, (2012), DOI: 10.1177/0959651811414507; [CrossRef] [Google Scholar]
  18. E. Pavlovkskaia, M. Wiercigroch and C. Grebogi, Modelling of an impact system with a drift, Phys. Rev. E, 64, 056224 (2001), DOI: 10.1103/PhysRevE.64.056224; [CrossRef] [Google Scholar]
  19. V.D. Nguyen and K.C. Woo, New electro-vibroimpact system, Proc. IMechE, Part C: J. Mech. Eng. Sc., Vol. 222, (4), 629-642 (2008), DOI: 10.1243/09544062JMES833; [CrossRef] [Google Scholar]
  20. V.D. Nguyen and K.C. Woo, Nonlinear dynamic responses of new electro-vibroimpact system, J. Sound. Vib.; 310(4-5), pp. 769-775 (2008), DOI: 10.1016/j.jsv.2007.10.032; [CrossRef] [Google Scholar]
  21. Y. Liu, E. Pavlovskaia and M. Wiercigroch, Experimental verification of the vibro-impact capsule model, Nonlinear Dyn., 83(1), 1029-1041 (2016), DOI: 10.1007/s11071-015-2385-6; [CrossRef] [Google Scholar]
  22. J.H. Ho, V.D. Nguyen and K.C. Woo, Nonlinear dynamics of a new electro-vibroimpact system; Nonlinear Dyn., 63(1-2), 35-49 (2011), DOI: 10.1007/S11071-010-9783-6; [CrossRef] [Google Scholar]
  23. Y. Liu, S. Islam, E. Pavlovskaia and M. Wiercigroch, Optimization of the Vibro-Impact Capsule System, Strojniški vestnik - Journal of Mechanical Engineering 62, 7-8, 430-439 (2016), DOI: 10.5545/sv-jme.2016.3754; [CrossRef] [Google Scholar]
  24. Y. Liu, E. Pavlovskaia, M. Wiercigroch, Z. Peng, Forward and backward motion control of a vibro-impact capsule system, Int. J. Nonlinear. Mech. 70, 30–46, (2015) DOI: 10.1016/j.ijnonlinmec.2014.10.009; [CrossRef] [Google Scholar]
  25. V-D. Nguyen, T-H. Duong, N-H. Chu and Q-H. Ngo, The effect of inertial mass and excitation frequency on a Duffing vibro-impact drifting system, Int. J. Mech. Sci., 124-125, pp. 9-21 (2017), DOI: 10.1016/j.ijmecsci.2017.02.023. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.