Open Access
Issue
MATEC Web Conf.
Volume 139, 2017
2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2017)
Article Number 00075
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/201713900075
Published online 05 December 2017
  1. K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures, Progress in Aerospace Sciences 46 (8) (2010) 342–352. [CrossRef] [Google Scholar]
  2. Qing X, Beard S, Ikegami R, Chang F-K, Boller C. Aerospace Applications of SMART Layer Technology[M]. Encyclopedia of Structural Health Monitoring, Wiley, 2009. [Google Scholar]
  3. Alessandro Perelli, Sevan Harput, Luca DeMarchi and Steven Freear. Frequency Warping Compressive Sensing for Structural Monitoring of Aircraft Wing[J], IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol: 60, pp.2089–2097, October. 2013. [CrossRef] [Google Scholar]
  4. Yuan Mei, Wang Shujuan, Dong Shaopeng and Pang Zhuo. “Reconstruction of Undersampled Damage Monitoring Signal Based on Compressed Sensing”. Guidance, Navigation and Control Conference (CGNCC), 2014 IEEE Chinese, Yantai, China, 2014, pp. 2243–2248. [Google Scholar]
  5. Ju-min Zhao, Ding Feng, Deng-ao Li, and Bao-feng Zhao, “Power-free Structural Health Monitoring via compressive sensing”, Computing and Communications Conference (IPCCC), 2015 IEEE 34th International Performance, Nanjing, China, 2015. [Google Scholar]
  6. D. Karampoulas, S.M. Kouadri, L.S. Dooley, “A Novel Precolouring-Random Demodulator Architecture for Compressive Spectrum Estimation”, Intelligent Signal Processing Conference 2013 (ISP 2013), IET, London, UK, 2013. [Google Scholar]
  7. Tamer Ragheb, Jason N. Laska, Hamid Nejati and Sami Kirolos, “A Prototype Hardware for Random Demodulation Based Compressive Analog-to-Digital Conversion”, 51st Midwest Symposium on Circuits and Systems, Knoxville, TN, USA, 2008. [Google Scholar]
  8. Ning Fu, Pingfan Song, Peizhuo Liu, and Jingchao Zhang, “Boost the Efficiency of Spectrum Sensing Using Synchronized Random Demodulation”, 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014, pp.525–530. [Google Scholar]
  9. Ning Fu, Tingting Yao, Hongwei Xu, “COMPRESSIVE BLIND SOURCE RECOVERY WITH RANDOM DEMODULATION”, 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 2014, pp.746–750. [Google Scholar]
  10. E. Astaiza, H. F. Bermúdez, W. Y. Campo, “Efficient Wideband Spectrum Sensing Based on Compressive Sensing and Multiband Signal Covariance”, IEEE Latin America Transactions, vol:15, pp.393–399, 2017 [CrossRef] [Google Scholar]
  11. Smaili S, Massoud Y, “Accurate and efficient modeling of random demodulation based compressive sensing systems with a general filter”, Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014, pp. 2519–2522. [CrossRef] [Google Scholar]
  12. Kirolos S, Laska J, Wakin M, et al, “Analog-to-information conversion via random demodulation”, Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on. IEEE, 2006, pp.71–74. [CrossRef] [Google Scholar]
  13. Ning Fu, Pingfan Song, Jingchao Zhang and Ying Liu, “A Random Demodulation Hardware System with Automatic Synchronization Function”, IEEE International Instrumentation and Measurement Technology, Minneapolis, MN, USA, 2013, pp.1554–1558. [Google Scholar]
  14. Shan S, Qiu J, Zhang C, et al. Multi-damage localization on large complex structures through an extended delay-and-sum based method[J]. Structural Health Monitoring, 2016, 15(1): 50–64. [CrossRef] [Google Scholar]
  15. Pawel J. Pankiewicz, Thomas Arildsen, Torben Larsen, “SENSITIVITY OF THE RANDOM DEMODULATION FRAMEWORK TO FILTER TOLERANCES”, Signal Processing Conference, European, 2011, pp.534–538. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.