Open Access
MATEC Web Conf.
Volume 139, 2017
2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2017)
Article Number 00007
Number of page(s) 4
Published online 05 December 2017
  1. Kovács L. Visual Monocular Obstacle Avoidance for Small Unmanned Vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2016: 59–66. [Google Scholar]
  2. Deng L., Yu D. Deep learning: methods and applications[J]. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387. [CrossRef] [Google Scholar]
  3. Jia B., Feng W., Zhu M. Obstacle detection in single images with deep neural networks[J]. Signal, Image and Video Processing, 2016, 10(6): 1033–1040. [CrossRef] [Google Scholar]
  4. Levine S., Finn C., Darrell T., et al. End-to-end training of deep visuomotor policies[J]. arXiv preprint arXiv:1504.00702, 2015. [Google Scholar]
  5. Nicolai A., Skeele R., Eriksen C., et al. Deep Learning for Laser Based Odometry Estimation[J]. [Google Scholar]
  6. Giusti A., Guzzi J., Cireşan DC., et al. A machine learning approach to visual perception of forest trails for mobile robots[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 661–667. [CrossRef] [Google Scholar]
  7. Ross S., Melik-Barkhudarov N., Shankar KS., et al. Learning monocular reactive uav control in cluttered natural environments[C]//Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013: 1765–1772. [Google Scholar]
  8. LeCun Y., Muller U., Ben J., et al. Off-road obstacle avoidance through end-to-end learning[C]//NIPS. 2005: 739–746. [Google Scholar]
  9. Pfeiffer M., Schaeuble M., Nieto J., et al. From Perception to Decision: A Data-driven Approach to End-to-end Motion Planning for Autonomous Ground Robots[J]. arXiv preprint arXiv:1609.07910, 2016. [Google Scholar]
  10. Jia Y., Shelhamer E., Donahue J., et al. Caffe: Convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014: 675–678. [Google Scholar]
  11. Krizhevsky A., Sutskever I., Hinton GE. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097–1105. [Google Scholar]
  12. Quigley M., Conley K., Gerkey B., et al. ROS: an opensource robot operating system In: ICRA workshop on open source software[J]. IEEE, Kobe, Japan, 2009. [Google Scholar]
  13. Tai L., Li S., Liu M. A deep-network solution towards model-less obstacle avoidance[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 2759–2764. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.