Open Access
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00073
Number of page(s) 9
Published online 20 November 2017
  1. S. Abdul Rauf, J. S. Waqar, Information Mining from Muslim Scriptures. In: International Joint Conference on Natural Language Processing (WSSANLP) pp. 66-71 (2013) [Google Scholar]
  2. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval: The concepts and technology behind search (Second Edition), Pearson Education Limited (England: Pearson) Chapter 1-3 pp. 1-130 (2011) [Google Scholar]
  3. J. Dakir, F. A. Shah, A contextual approach in understanding the prophet's hadith. Applied Sciences, 8(7): 3176-3184 (2012) [Google Scholar]
  4. Hammouda KM, Kamel MS (2004) Efficient phrase-based document indexing for web document clustering. In: IEEE Transactions on knowledge and data engineering, 16(10), pp. 1279-1296 (2004) [Google Scholar]
  5. M. Ilic, P. Spalevic, M. Veinovic, Suffix Tree Clustering–Data mining algorithm. In: Twenty-Third International Electrotechnical and Computer Science Conference (ERK 2014), pp. 15-18 (2014) [Google Scholar]
  6. A. K. Jain, S. Maheshwari, Phrase based Clustering Scheme of Suffix Tree Document Clustering Model. Computer Applications, 63(10): 30-37 (2013) [Google Scholar]
  7. K. Jbara, Knowledge discovery in Al-Hadith using text classification algorithm. American Science, 6(11): 409-19 (2010) [Google Scholar]
  8. N. Moath, A. Abdelkarim, A. Musab, O. Abdelrahman, A Lexicon for Hadith Science Based on a Corpus, Computer Science and Information Technologies, 6(2): 1336-1340 (2015) [Google Scholar]
  9. A. S. Mohammad, I. Norisma, M. Rohana, J. Salinah, D. Thorleuchter, G. Abdullah, Hadith data mining and classification: a comparative analysis. Artificial Intelligence, 46(1): 113-128 (2016) [Google Scholar]
  10. T. M. R. Amirah, Latent Semantic Indexing (LSI) Using Parallel Programming Technique For Malay Hadith Translated Document Retrieval. Unpublished master disertation thesis, Universiti Teknologi Mara (UiTM), Malaysia (2014) [Google Scholar]
  11. N. A. Rahman, Z. A. Bakar, N. S. S. Zulkefli, Malay document clustering using complete linkage clustering technique with Cosine Coefficient. In: Open Systems (ICOS 2015), pp. 103-107: IEEE (2015) [CrossRef] [Google Scholar]
  12. N. A. Rahman, Evaluating The Effectiveness of Clustering Techniques In Retrieving Malay Translated hadith Text. Unpublished doctoral thesis, Universiti Teknologi Mara (UiTM), Malaysia (2011) [Google Scholar]
  13. N. A. Rahman, Z. A. Bakar, T. M. T. Sembok, N. K. Ismail, Cluster-Based Hadith Retrieval System. In: Proceedings of the International Conference on ICT for the Muslim World (ICT4M), Kuala Lumpur (2006) [Google Scholar]
  14. N. A. Rahman, Z. A. Bakar, T. M. T. Sembok, Query Expansion using Thesaurus in Improving Malay Hadith Retrieval System, In: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval pp. 46-54: ACM (2010) [Google Scholar]
  15. I. Sahmoudi, H. Froud, A. Lachkar, A new keyphrases extraction method based on asuffix tree data structure for Arabic documents clustering. Database Management Systems, 5(6):17-33 (2014) [CrossRef] [Google Scholar]
  16. A.S. Noh, N. Omar, A. Y. Amru, Evaluation of Lexical-Based Approaches to the Semantic Similarity of Malay Sentences. Qualitative Linguistics, 22(2):135-156 (2015) [CrossRef] [Google Scholar]
  17. H. Zainuddin, H. S. Fachruddin, T. Nasharuddin, A. Johar, M. A. A. R. Zainuddin, Terjemahan Hadis Shahih Bukhari Jilid I, II, III, IV (Cetakan Keenam), Kuala Lumpur Malaysia: Klang Book Centre, pp. 1-220 (2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.