Open Access
Issue
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00062
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/201713500062
Published online 20 November 2017
  1. R. Singh, N.B. Dahotre, “Corrosion degradation and prevention by surface modification of biometallic materials”, J. Mater. Sci. Mater. Med., Vol. 18, No 5, pp. 725-51 (2007) [CrossRef] [Google Scholar]
  2. M. Niinomi, M. Nakai, J. Hieda, “Development of new metallic alloys for biomedical applications.”, Acta Biomater., Vol. 8, No 11, pp. 3888-903 (2012) [CrossRef] [Google Scholar]
  3. K. Kato, A. Yamamoto, S. Ochiai, M. Wada, Y. Daigo, K. Kita, K. Omori, “Cytocompatibility and mechanical properties of novel porous 316L stainless steel”, Mater. Sci. Eng. C (2013) [Google Scholar]
  4. M. Navarro, A. Michiardi, O. Castaño, J. A. Planell, “Biomaterials in orthopaedics.”, J. R. Soc. Interface, Vol. 5, No 27, pp. 1137-58 (2008) [Google Scholar]
  5. P. Quadbeck, K. Kümmel, R. Hauser, G. Standke, “Open Cell Metal Foams-Application-oriented Structure and Ma-terial Selection”, Ifam-Dd.Fraunhofer.De (1966) [Google Scholar]
  6. Q. Chen, D. Mohn, and W.J. Stark, “Optimization of Bioglass® Scaffold Fabrication Process”, J. Am. Ceram. Soc., Vol. 94, No 12, pp. 4184-4190 (2011) [CrossRef] [Google Scholar]
  7. P. Quadbeck, K. Kümmel, R. Hauser, G. Standke, J. Adler, G. Stephani, B. Kieback, “Structural and Material Design of Open-Cell Powder Metallurgical Foams”, Adv. Eng. Mater., Vol. 13, No 11, pp. 1024-1030 (2011) [CrossRef] [Google Scholar]
  8. A. Nouri, P. Hodgson, C. Wen, “Biomimetic porous titanium scaffolds for orthopedic and dental applications”, pp. 415-451 (2010) [Google Scholar]
  9. A.E.A. Maya, Grana, D.R. A. Hazarabedian, G. A. Kokubu, M. I. Luppo, G. Vigna, “Zr-Ti-Nb porous alloys for biomedical application”, Mater. Sci. Eng. C, Vol. 32, No 2, pp. 321-329 (2012) [CrossRef] [Google Scholar]
  10. A. Alem, , M.D. Pugh, and R.A.L. Drew, “Open-cell reaction bonded silicon nitride foams: Fabrication and characterization”, J. Eur. Ceram. Soc., Vol. 34, No 3, pp. 599-609 (2014) [CrossRef] [Google Scholar]
  11. S. Ahmad, N. Muhamadand A. Muchtar, “Development and Characterization of Titanium Alloy Foams”, Int. J. Mech. Mater. Eng., Vol. 5, No 2, pp. 244-250 (2010) [Google Scholar]
  12. S. Won, H. Jung, M. Kang, H. Kim, Y. Koh, Y. Estrin, “Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer”, Mater. Sci. Eng. C, Vol. 33, No 5, pp. 2808-2815 (2013) [CrossRef] [Google Scholar]
  13. M.A.A.M. Nor, H.M. Akil, Z.A. Ahmad, “The effect of polymeric template density and solid loading on the properties of ceramic foam”, Sci. Sinter., Vol. 41, No 3, pp. 319-327 (2009) [CrossRef] [Google Scholar]
  14. M.J. Matos, S. Dias, F. A. C. Oliveira, “Macrostructural changes of polymer replicated open cell cordierite based foams upon sintering”, Vol. 106, No 5, pp. 209-215 (2007) [Google Scholar]
  15. J.P. Li., C. A. V. A. N. Blitterswijk, K. D. E. Groot, “Factors having in ̅ uence on the rheological properties of Ti6A14V slurry”, Vol. 5, pp. 951-958 (2004) [Google Scholar]
  16. J. Banhart, J. Baumeister, “Deformation characteristicsof metal foams”, J. Mater. Sci., Vol. 33, pp. 1431-1440 (1998) [CrossRef] [Google Scholar]
  17. Q. Fu, M.N. Rahaman, B.Sonny Bal, R.F. Brown, D.E. Day, “Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique”, Acta Biomater., Vol. 4, No 6, pp. 1854-1864 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.