Open Access
Issue
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00061
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/201713500061
Published online 20 November 2017
  1. M.A.M. Dzahir, S.I. Yamamoto, Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers, Robotics, 3(2), 120-148 (2014) [CrossRef] [Google Scholar]
  2. B.G., Nascimento, C.B. Vimieiro, D.A. Nagem, M. Pinotti, Hip orthosis powered by pneumatic artificial muscle: Voluntary activation in absence of myoelectrical signal, Artif. Organs, 32, 317-322 (2008) [CrossRef] [Google Scholar]
  3. C.B.S. Vimieiro, B.G. Nascimento, D.A.P Nagem, M. Pinotti, Development of a hip orthosis using pneumatic artificial muscles, In Proceeding of TMSi, (2005) July18-1; São Paulo, Spain [Google Scholar]
  4. K. Bharadwaj, T.G. Sugar, Kinematics of a robotic gait trainer for stroke rehabilitation, In Proceedings of the IEEE International Conference on Robotics and Automation, (2006) May 15-19;Orlando, FL, USA [Google Scholar]
  5. D.P., Ferris, K.E. Gordon, G.S. Sawicki, A. Peethambaran, An improved powered ankle-foot orthosis using proportional myoelectric control, Gait Posture 23, 425-428 (2006) [CrossRef] [Google Scholar]
  6. D.P., Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles, J. Appl. Biomechanics, 21, 189-197 (2005) [CrossRef] [Google Scholar]
  7. K.E., Gordon, G.S. Sawicki, D.P. Fessis, Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis, J. Biomech., 39, 1832-1841 (2006) [CrossRef] [Google Scholar]
  8. N. Costa, M. Bezdicek, M. Brown, J.O. Gray, D.G. Caldwell, Joint motion control of a powered lower limb orthosis for rehabilitation, Int. J. Autom. Computation, 3, 271-281 (2006) [CrossRef] [Google Scholar]
  9. T. Miyoshi, K. Hiramatsu, S.I. Yamamoto, K. Nakazawa, M. Akai, Robotic gait trainer in water: Development of an underwater gait-training orthosis, Disabil. Rehabilitation, 30, 81-87 (2008) [CrossRef] [EDP Sciences] [Google Scholar]
  10. P. Malcom, P. Fiers, V. Segers, I. Caekenberghe, M. Lenoir, D. Clercq, Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton, Gait Posture, 30, 322-327 (2009) [CrossRef] [Google Scholar]
  11. P. Malcom, V. Segers, I. Caekenberghe, D. Clercq, Experimental study of the influence of the m. tibialis anterior on the walk-to-run transition by means of a powered anklefoot- exoskeleton, Gait Posture, 29, 6-10 (2009) [CrossRef] [Google Scholar]
  12. S. Galle, P. Malcom, W. Derave, D. Clercq, Ada, Gait Posture, 38, 495-499 (2013) [CrossRef] [Google Scholar]
  13. P. Malcom, W. Derave, S. Galle, D. Clercq, A simple exoskeleton that assist plantarflexion can reduce the metabolic cost of human walking, PLoS One, 8, 0056137 (2013) [CrossRef] [Google Scholar]
  14. G.S., Sawicki, D.P. Fessis, A pneumatically powered knee-ankle-foot orthosis (KAFO)with myoelectric activation and inhibition, J. Neuro-Eng. Rehabil., 6, 23:1-23:16 (2009) [Google Scholar]
  15. T.T., Deaconescu, A.I. Deaconescu, Pneumatic muscle actuated equipment for continuous passive motion, IAENG Trans. Eng. Technol., doi:10.1063/1.3256258 (2009) [Google Scholar]
  16. B. Pieter, V.D. Michael, V.H. Ronald, V. Bram, L. Dirk, Design and control of lower limb exoskeleton for robot-assisted gait training, Applied Bionics and Biomechanics, 6(2), 229-243 (2009) [CrossRef] [Google Scholar]
  17. B. Pieter, V.D. Michael, V.H. Ronald, V. Bram, L. Dirk, Pleated pneumatic artificial muscle based actuator system as a torque source for compliant lower limb exoskeletons, IEEE/ASME Transactions on Mechatronics, 19(3), 1046-1056 (2014) [CrossRef] [Google Scholar]
  18. T.J., Yeh, M.J. Wu, T.J. Lu, F.K. Wu, C.R. Huang, Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis, Mechatronics, 20, 686-697 (2010) [Google Scholar]
  19. J. Carberry, G. Hinchly, J. Buckerfield, E. Taylor, T. Burton, S. Madgwick, R. Vaidyanathan, Parametric design of an active ankle foot orthosis with passive compliance, In Proceedings of the Computer-Based Medical System (CBMS), (2011) June 27-30; Bristol, UK [Google Scholar]
  20. Y. Park, B. Chen, D. Young, L. Stirling, R. Wood, E. Goldfield, R. Nagpal, Bioinspired Active Soft Orthotic Device for Ankle Foot Pathologies, In Proceedings of the International Conference on Robots and Systems (IROS), (2011) September 25-30; San Francisco, CA, USA [Google Scholar]
  21. Y. Park, B. Chen, C. Majidi, R. Wood, R. Nagpal, E. Goldfield, Active Modular Elastomer Sleeve for Soft Wearable Assistance Robots, In Proceedings of the IEEE International Conference on Robots and Systems (IROS), (2012) October 7-12; Vilamoura, Portugal [Google Scholar]
  22. C.M., Teng, Z.Y. Wong, W.Y. The, Y.Z. Chong, Design and development of inexpensive pneumatically-powered assisted knee-ankle-foot orthosis for gait rehabilitation-preliminary finding, In Proceedings of the International Conference on Biomedical Engineering (ICoBE), (2012) February 27-28; Penang, Malaysia [Google Scholar]
  23. T. Kawamura, K. Takanaka, Development of an orthosis for walking assistance using pneumatic artificial muscle-a quantitative assessment of the effect of assistance, In Proceedings of the International Conference on Rehabilitation Robotics, (2013) June 24-26; Seattle, WA, USA [Google Scholar]
  24. S. Hussain, S.Q. Xie, P.K. Jamwal, Adaptive impedance control of a robotic orthosis for gait rehabilitation, IEEE Trans. Cybern., 43, 1025-1034 (2013) [CrossRef] [Google Scholar]
  25. S. Hussain, S.Q. Xie, P.K. Jamwal, Robust nonlinear control of an intrinsically compliant robotic gait training orthosis, IEEE Trans. Syst. Man Cybern.: System, 43, 655-665 (2013) [CrossRef] [Google Scholar]
  26. K.D., William, Task-based methods for evaluating electrically stimulated antagonist muscle controllers, IEEE Trans. on Biomedical Engineering, 36 (1989) [Google Scholar]
  27. M. Samer, F. Philippe, G. David, P. Philippe, E.M. Hassan, Towards a co-contraction muscle control strategy for paraplegics. IEEE Conf. on Decision and Control. (2005) [Google Scholar]
  28. H. Stewart, F. Norm, B. Michael, Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb, Frontiers in Neurorobotics, 5 (2012) [Google Scholar]
  29. M.A.M. Dzahir, S.I. Yamamoto, Design and Evaluation of the AIRGAIT Exoskeleton: Leg Orthosis Control for Assistive Gait Rehabilitation, Journal of Robotics, vol. 2013, Article ID 535106, 20 pages, doi:10.1155/2013/535106 (2013) [Google Scholar]
  30. P. Flavio, M.A.M. Dzahir, S.I. Yamamoto, Computed-torque method for the control of a 2 DOF orthosis actuated through pneumatic artificial muscles: a specific case for the rehabilitation of the lower limb, Medical Physics, arXiv: 1404.6968 [physics.med-ph] (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.