Open Access
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
Article Number 04017
Number of page(s) 5
Section Economic, environmental, social and policy aspects of energy
Published online 25 October 2017
  1. A.T. Hammid. Applications of Tuning Control Actions for the Efficient Load/frequency Control in Steam Turbine. International Journal of Current Engineering and Technology, (2013). 3(5): p. 1895–1898. [Google Scholar]
  2. A.T. Hammid, et al., Load Frequency Control for Hydropower Plants using PID Controller. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), (2016). 8(10): p. 47–51. [Google Scholar]
  3. A.T. Hammid, A.K. Bhardwaj, and S. Prakash., Design Remote Power Control I/O Data Acquisition System and Control on Home Automation. IJECCE, (2013). 4(2): p. 528–535. [Google Scholar]
  4. A.T. Hammid, M.H.B Sulaiman, and A.N. Abdalla., Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network. Alexandria Engineering Journal, (2017). [Google Scholar]
  5. S.H. Kiran, D.S. Sekhar, and C. Subramani., Performance of two modified optimization techniques for power system voltage stability problems. Alexandria Engineering Journal, (2016). 55(3): p. 2525–2530. [CrossRef] [Google Scholar]
  6. M. Shalini, et al., Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alexandria Engineering Journal, (2017). [Google Scholar]
  7. M.S.R. Naidu, P.R. Kumar, and C. K, Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Engineering Journal, (2017). [Google Scholar]
  8. S.S. Nanivadekar and U.D. Kolekar., An approach involving dynamic group search optimization for allocating resources in OFDM-based cognitive radio system. Alexandria Engineering Journal, (2016). [Google Scholar]
  9. L. Baohong, et al., Study on the optimal hydropower generation of Zhelin reservoir. Journal of Hydro-environment Research, (2013). 7(4): p. 270–278. [CrossRef] [Google Scholar]
  10. L. Peng, et al., Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm. Energy Conversion and Management, (2015). 91(Supplement C): p. 19–31. [CrossRef] [Google Scholar]
  11. M.R. Ahmadi, et al., Comment on ‘Differential evolution technique-based short-term economic generation scheduling of hydrothermal systems’ by K.K. Mandal, N. Chakraborty Electric Power Systems Research 78 (2008) 1972-1979. Electric Power Systems Research, (2017). 147(Supplement C): p. 310–312. [CrossRef] [Google Scholar]
  12. Tedjani, M., et al., Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder-Mead (PSO-NM) optimization algorithm. Electric Power Systems Research, (2016). 131(Supplement C): p. 195–204. [CrossRef] [EDP Sciences] [Google Scholar]
  13. M. Li, et al., Short-term hydro generation scheduling of Three Gorges-Gezhouba cascaded hydropower plants using hybrid MACS-ADE approach. Energy Conversion and Management, (2013). 76(Supplement C): p. 260–273. [CrossRef] [Google Scholar]
  14. H. Wang, et al., A hybrid multi-objective firefly algorithm for big data optimization. Applied Soft Computing, (2017). [Google Scholar]
  15. Y. Zhang, S. Xian-fang, and G. Dun-wei., A return-cost-based binary firefly algorithm for feature selection. Information Sciences, (2017). 418(Supplement C): p. 561–574. [CrossRef] [Google Scholar]
  16. H. Wang, et al., Firefly algorithm with neighborhood attraction. Information Sciences, (2017). 382(Supplement C): p. 374–387. [CrossRef] [Google Scholar]
  17. D. Sánchez, P. Melin, and O. Castillo, Optimization of modular granular neural networks using a firefly algorithm for human recognition. Engineering Applications of Artificial Intelligence, (2017). 64(Supplement C): p. 172–186. [CrossRef] [Google Scholar]
  18. H. Wang, et al., A hybrid multi-objective firefly algorithm for big data optimization. Applied Soft Computing, (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.